ﻻ يوجد ملخص باللغة العربية
We report on observations of redshifted CO(1-0) line emission and observed-frame $rmsim$ 30GHz radio continuum emission from five ultra-luminous, mid-IR selected hot, Dust-Obscured Galaxies (Hot DOGs) at $zrmgtrsim$ 3 using the Karl G. Jansky Very Large Array. We detect CO(1-0) line emission in all five Hot DOGs, with one of them at high signal to noise. We analyse FIR-radio spectral energy distributions, including dust, free-free and synchrotron emission for the galaxies. We find that most of the 115 GHz rest-frame continuum is mostly due to synchrotron or free-free emission, with only a potentially small contribution from thermal emission. We see a deficit in the rest-frame 115 GHz continuum emission compared to dusty star-forming galaxies (DSFGs) and sub-millimetre galaxies (SMGs) at high redshift, suggesting that Hot DOGs do not have similar cold gas reserves compared with star-forming galaxies. One target, W2305-0039, is detected in the FIRST 1.4 GHz survey, and is likely to possess compact radio jets. We compare to the FIR-radio correlation, and find that at least half of the Hot DOGs in our sample are radio-quiet with respect to normal galaxies. These findings suggest that Hot DOGs have comparably less cold molecular gas than star-forming galaxies at lower, $zrmsim$ 2 redshifts, and are dominated by powerful, yet radio-quiet AGN.
In this paper we present the detection of H2O and OH+ emission in z>3 hot dust-obscured galaxies (Hot DOGs). Using ALMA Band-6 observations of two Hot DOGs, we have detected H2O(2_02-1_11) in W0149+2350, and H2O(3_12-3_03) and the multiplet OH+(1_1-0
The coevolution of galaxies and their central supermassive black holes is a subject of intense research. A class of objects, the dust-obscured galaxies (DOGs) are particularly interesting in this respect as they are thought to represent a short evolu
We investigate the relation between the detection of the $11.3,mu$m PAH feature in the nuclear ($sim 24-230,$pc) regions of 22 nearby Seyfert galaxies and the properties of the cold molecular gas. For the former we use ground-based (0.3-0.6 resolutio
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically lumin
We present VLT/XSHOOTER rest-frame UV-optical spectra of 10 Hot Dust-Obscured Galaxies (Hot DOGs) at $zsim2$ to investigate AGN diagnostics and to assess the presence and effect of ionized gas outflows. Most Hot DOGs in this sample are narrow-line do