ﻻ يوجد ملخص باللغة العربية
Building on the foundations in our previous paper, we study Segal conditions that are given by finite products, determined by structures we call cartesian patterns. We set up Day convolution on presheaves in this setting and use it to give conditions under which there is a colimit formula for free algebras and other left adjoints. This specializes to give a simple proof of Luries results on operadic left Kan extensions and free algebras for symmetric $infty$-operads.
Consider a diagram $cdots to F_3 to F_2to F_1$ of algebraic systems, where $F_n$ denotes the free object on $n$ generators and the connecting maps send the extra generator to some distinguished trivial element. We prove that (a) if the $F_i$ are free
Using the description of enriched $infty$-operads as associative algebras in symmetric sequences, we define algebras for enriched $infty$-operads as certain modules in symmetric sequences. For $mathbf{V}$ a nice symmetric monoidal model category, we
Over a monoidal model category, under some mild assumptions, we equip the categories of colored PROPs and their algebras with projective model category structures. A Boardman-Vogt style homotopy invariance result about algebras over cofibrant colored
We set up foundations of representation theory over $S$, the sphere spectrum, which is the `initial ring of stable homotopy theory. In particular, we treat $S$-Lie algebras and their representations, characters, $gl_n(S)$-Verma modules and their dual
Game semantics has provided adequate models for a variety of programming languages, in which types are interpreted as two-player games and programs as strategies. Melli`es (2018) suggested that such categories of games and strategies may be obtained