ﻻ يوجد ملخص باللغة العربية
Over a monoidal model category, under some mild assumptions, we equip the categories of colored PROPs and their algebras with projective model category structures. A Boardman-Vogt style homotopy invariance result about algebras over cofibrant colored PROPs is proved. As an example, we define homotopy topological conformal field theories and observe that such structures are homotopy invariant.
We set up foundations of representation theory over $S$, the sphere spectrum, which is the `initial ring of stable homotopy theory. In particular, we treat $S$-Lie algebras and their representations, characters, $gl_n(S)$-Verma modules and their dual
We introduce a new category of differential graded multi-oriented props whose representations (called homotopy algebras with branes) in a graded vector space require a choice of a collection of $k$ linear subspaces in that space, $k$ being the number
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as par
We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints.
We explain how higher homotopy operations, defined topologically, may be identified under mild assumptions with (the last of) the Dwyer-Kan-Smith cohomological obstructions to rectifying homotopy-commutative diagrams.