ترغب بنشر مسار تعليمي؟ اضغط هنا

Markov-Lipschitz Deep Learning

90   0   0.0 ( 0 )
 نشر من قبل Stan Z Li
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel framework, called Markov-Lipschitz deep learning (MLDL), to tackle geometric deterioration caused by collapse, twisting, or crossing in vector-based neural network transformations for manifold-based representation learning and manifold data generation. A prior constraint, called locally isometric smoothness (LIS), is imposed across-layers and encoded into a Markov random field (MRF)-Gibbs distribution. This leads to the best possible solutions for local geometry preservation and robustness as measured by locally geometric distortion and locally bi-Lipschitz continuity. Consequently, the layer-wise vector transformations are enhanced into well-behaved, LIS-constrained metric homeomorphisms. Extensive experiments, comparisons, and ablation study demonstrate significant advantages of MLDL for manifold learning and manifold data generation. MLDL is general enough to enhance any vector transformation-based networks. The code is available at https://github.com/westlake-cairi/Markov-Lipschitz-Deep-Learning.



قيم البحث

اقرأ أيضاً

73 - Guy Uziel 2019
Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learnin g and tackle the challenging problem where the underlying process is stationary and ergodic and thus removing the i.i.d. assumption and allowing observations to depend on each other arbitrarily. We prove the generalization abilities of Lipschitz regularized deep neural networks and show that by using those networks, a convergence to the best possible prediction strategy is guaranteed.
We aim to design adaptive online learning algorithms that take advantage of any special structure that might be present in the learning task at hand, with as little manual tuning by the user as possible. A fundamental obstacle that comes up in the de sign of such adaptive algorithms is to calibrate a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc. A recent technique promises to overcome this difficulty by maintaining multiple learning rates in parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization and the Squint algorithm for prediction with expert advice. However, in both cases the user still has to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set too small, the methods may fail completely; but if it is taken too large, performance deteriorates significantly. In the present work we remove this Lipschitz hyperparameter by designing n
ShuffleNet is a state-of-the-art light weight convolutional neural network architecture. Its basic operations include group, channel-wise convolution and channel shuffling. However, channel shuffling is manually designed empirically. Mathematically, shuffling is a multiplication by a permutation matrix. In this paper, we propose to automate channel shuffling by learning permutation matrices in network training. We introduce an exact Lipschitz continuous non-convex penalty so that it can be incorporated in the stochastic gradient descent to approximate permutation at high precision. Exact permutations are obtained by simple rounding at the end of training and are used in inference. The resulting network, referred to as AutoShuffleNet, achieved improved classification accuracies on CIFAR-10 and ImageNet data sets. In addition, we found experimentally that the standard convex relaxation of permutation matrices into stochastic matrices leads to poor performance. We prove theoretically the exactness (error bounds) in recovering permutation matrices when our penalty function is zero (very small). We present examples of permutation optimization through graph matching and two-layer neural network models where the loss functions are calculated in closed analytical form. In the examples, convex relaxation failed to capture permutations whereas our penalty succeeded.
Optimization in the presence of sharp (non-Lipschitz), unpredictable (w.r.t. time and amount) changes is a challenging and largely unexplored problem of great significance. We consider the class of piecewise Lipschitz functions, which is the most gen eral online setting considered in the literature for the problem, and arises naturally in various combinatorial algorithm selection problems where utility functions can have sharp discontinuities. The usual performance metric of $mathit{static}$ regret minimizes the gap between the payoff accumulated and that of the best fixed point for the entire duration, and thus fails to capture changing environments. Shifting regret is a useful alternative, which allows for up to $s$ environment shifts. In this work we provide an $O(sqrt{sdTlog T}+sT^{1-beta})$ regret bound for $beta$-dispersed functions, where $beta$ roughly quantifies the rate at which discontinuities appear in the utility functions in expectation (typically $betage1/2$ in problems of practical interest). We also present a lower bound tight up to sub-logarithmic factors. We further obtain improved bounds when selecting from a small pool of experts. We empirically demonstrate a key application of our algorithms to online clustering problems on popular benchmarks.
We study Online Convex Optimization in the unbounded setting where neither predictions nor gradient are constrained. The goal is to simultaneously adapt to both the sequence of gradients and the comparator. We first develop parameter-free and scale-f ree algorithms for a simplified setting with hints. We present t

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا