ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering two-qubit mixed states with weak measurements

106   0   0.0 ( 0 )
 نشر من قبل Parveen Kumar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is known that protocols based on weak measurements can be used to steer quantum systems into pre-designated pure states. Here we show that weak-measurement-based steering protocols can be harnessed for on-demand engineering of $textit{mixed}$ states. In particular, through a continuous variation of the protocol parameters, one can guide a classical target state to a discorded one, and further on, towards an entangled target state.

قيم البحث

اقرأ أيضاً

259 - Zhe Guan , Huan He , Yong-Jian Han 2013
The ability to reach a maximally entangled state from a separable one through the use of a two-qubit unitary operator is analyzed for mixed states. This extension from the known case of pure states shows that there are at least two families of gates which are able to give maximum entangling power for all values of purity. It is notable that one of this gates coincides with a maximum discording one. We give analytical proof that such gate is indeed perfect entangler at all purities and give numerical evidence for the existence of the second one. Further, we find that there are other gates, many in fact, which are perfect entanglers for a restricted range of purities. This highlights the fact that many perfect entangler gates could in principle be found if a thorough analysis of the full parameter space is performed.
159 - Lars M. Johansen 2004
The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measur ements of noncommuting observables and for $c$-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.
We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered st ates are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.
To explore the properties of a two-qubit mixed state, we consider quantum teleportation. The fidelity of a teleported state depends on the resource state purity and entanglement, as characterized by concurrence. Concurrence and purity are functions o f state parameters. However, it turns out that a state with larger purity and concurrence, may have comparatively smaller fidelity. By computing teleportation fidelity, concurrence and purity for two-qubit X-states, we show it explicitly. We further show that fidelity changes monotonically with respect to functions of parameters - other than concurrence and purity. A state with smaller concurrence and purity, but larger value of one of these functions has larger fidelity. These functions, thus characterize nonlocal classical and/or quantum properties of the state that are not captured by purity and concurrence alone. In particular, concurrence is not enough to characterize the entanglement properties of a two-qubit mixed state.
We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a simple analytical expression for the qubits density-matrix. The qubits evolution exhibits a slow ($propto1/sqrt{t}$) damping of the qubits coherence term, which however turns to be a Gaussian one in the case of static qubit. This stays in contrast to the exponential damping produced by most classical detectors. The decoherence is, in general, incomplete and strongly depends on the initial state of the qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا