ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure by Architecture: Disentangled Representations without Regularization

119   0   0.0 ( 0 )
 نشر من قبل Felix Leeb
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of self-supervised structured representation learning using autoencoders for generative modeling. Unlike most methods which rely on matching an arbitrary, relatively unstructured, prior distribution for sampling, we propose a sampling technique that relies solely on the independence of latent variables, thereby avoiding the trade-off between reconstruction quality and generative performance inherent to VAEs. We design a novel autoencoder architecture capable of learning a structured representation without the need for aggressive regularization. Our structural decoders learn a hierarchy of latent variables, akin to structural causal models, thereby ordering the information without any additional regularization. We demonstrate how these models learn a representation that improves results in a variety of downstream tasks including generation, disentanglement, and extrapolation using several challenging and natural image datasets.



قيم البحث

اقرأ أيضاً

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a networks trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a networks trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at https://github.com/BayesWatch/nas-without-training.
Recent research has made the surprising finding that state-of-the-art deep learning models sometimes fail to generalize to small variations of the input. Adversarial training has been shown to be an effective approach to overcome this problem. Howeve r, its application has been limited to enforcing invariance to analytically defined transformations like $ell_p$-norm bounded perturbations. Such perturbations do not necessarily cover plausible real-world variations that preserve the semantics of the input (such as a change in lighting conditions). In this paper, we propose a novel approach to express and formalize robustness to these kinds of real-world transformations of the input. The two key ideas underlying our formulation are (1) leveraging disentangled representations of the input to define different factors of variations, and (2) generating new input images by adversarially composing the representations of different images. We use a StyleGAN model to demonstrate the efficacy of this framework. Specifically, we leverage the disentangled latent representations computed by a StyleGAN model to generate perturbations of an image that are similar to real-world variations (like adding make-up, or changing the skin-tone of a person) and train models to be invariant to these perturbations. Extensive experiments show that our method improves generalization and reduces the effect of spurious correlations (reducing the error rate of a smile detector by 21% for example).
A disentangled representation encodes information about the salient factors of variation in the data independently. Although it is often argued that this representational format is useful in learning to solve many real-world down-stream tasks, there is little empirical evidence that supports this claim. In this paper, we conduct a large-scale study that investigates whether disentangled representations are more suitable for abstract reasoning tasks. Using two new tasks similar to Ravens Progressive Matrices, we evaluate the usefulness of the representations learned by 360 state-of-the-art unsupervised disentanglement models. Based on these representations, we train 3600 abstract reasoning models and observe that disentangled representations do in fact lead to better down-stream performance. In particular, they enable quicker learning using fewer samples.
Learning disentangled representations is a key step towards effectively discovering and modelling the underlying structure of environments. In the natural sciences, physics has found great success by describing the universe in terms of symmetry prese rving transformations. Inspired by this formalism, we propose a framework, built upon the theory of group representation, for learning representations of a dynamical environment structured around the transformations that generate its evolution. Experimentally, we learn the structure of explicitly symmetric environments without supervision from observational data generated by sequential interactions. We further introduce an intuitive disentanglement regularisation to ensure the interpretability of the learnt representations. We show that our method enables accurate long-horizon predictions, and demonstrate a correlation between the quality of predictions and disentanglement in the latent space.
The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision. In this paper, we summarize the results of Locatello et al., 2019, and fo cus on their implications for practitioners. We discuss the theoretical result showing that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases and the practical challenges it entails. Finally, we comment on our experimental findings, highlighting the limitations of state-of-the-art approaches and directions for future research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا