ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Learning Dynamics of Binary Neural Networks via Information Bottleneck

68   0   0.0 ( 0 )
 نشر من قبل Nancy Nayak
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Compact neural networks are essential for affordable and power efficient deep learning solutions. Binary Neural Networks (BNNs) take compactification to the extreme by constraining both weights and activations to two levels, ${+1, -1}$. However, training BNNs are not easy due to the discontinuity in activation functions, and the training dynamics of BNNs is not well understood. In this paper, we present an information-theoretic perspective of BNN training. We analyze BNNs through the Information Bottleneck principle and observe that the training dynamics of BNNs is considerably different from that of Deep Neural Networks (DNNs). While DNNs have a separate empirical risk minimization and representation compression phases, our numerical experiments show that in BNNs, both these phases are simultaneous. Since BNNs have a less expressive capacity, they tend to find efficient hidden representations concurrently with label fitting. Experiments in multiple datasets support these observations, and we see a consistent behavior across different activation functions in BNNs.

قيم البحث

اقرأ أيضاً

The information bottleneck principle provides an information-theoretic method for representation learning, by training an encoder to retain all information which is relevant for predicting the label while minimizing the amount of other, excess inform ation in the representation. The original formulation, however, requires labeled data to identify the superfluous information. In this work, we extend this ability to the multi-view unsupervised setting, where two views of the same underlying entity are provided but the label is unknown. This enables us to identify superfluous information as that not shared by both views. A theoretical analysis leads to the definition of a new multi-view model that produces state-of-the-art results on the Sketchy dataset and label-limite
We propose a new approach to train a variational information bottleneck (VIB) that improves its robustness to adversarial perturbations. Unlike the traditional methods where the hard labels are usually used for the classification task, we refine the categorical class information in the training phase with soft labels which are obtained from a pre-trained reference neural network and can reflect the likelihood of the original class labels. We also relax the Gaussian posterior assumption in the VIB implementation by using the mutual information neural estimation. Extensive experiments have been performed with the MNIST and CIFAR-10 datasets, and the results show that our proposed approach significantly outperforms the benchmarked models.
158 - Qi Zhu , Yidan Xu , Haonan Wang 2020
Graph neural networks (GNNs) have been shown with superior performance in various applications, but training dedicated GNNs can be costly for large-scale graphs. Some recent work started to study the pre-training of GNNs. However, none of them provid e theoretical insights into the design of their frameworks, or clear requirements and guarantees towards the transferability of GNNs. In this work, we establish a theoretically grounded and practically useful framework for the transfer learning of GNNs. Firstly, we propose a novel view towards the essential graph information and advocate the capturing of it as the goal of transferable GNN training, which motivates the design of Ours, a novel GNN framework based on ego-graph information maximization to analytically achieve this goal. Secondly, we specify the requirement of structure-respecting node features as the GNN input, and derive a rigorous bound of GNN transferability based on the difference between the local graph Laplacians of the source and target graphs. Finally, we conduct controlled synthetic experiments to directly justify our theoretical conclusions. Extensive experiments on real-world networks towards role identification show consistent results in the rigorously analyzed setting of direct-transfering, while those towards large-scale relation prediction show promising results in the more generalized and practical setting of transfering with fine-tuning.
Graph Neural Networks (GNNs) achieve an impressive performance on structured graphs by recursively updating the representation vector of each node based on its neighbors, during which parameterized transformation matrices should be learned for the no de feature updating. However, existing propagation schemes are far from being optimal since they do not fully utilize the relational information between nodes. We propose the information maximizing graph neural networks (IGNN), which maximizes the mutual information between edge states and transform parameters. We reformulate the mutual information as a differentiable objective via a variational approach. We compare our model against several recent variants of GNNs and show that our model achieves the state-of-the-art performance on multiple tasks including quantum chemistry regression on QM9 dataset, generalization capability from QM9 to larger molecular graphs, and prediction of molecular bioactivities relevant for drug discovery. The IGNN model is based on an elegant and fundamental idea in information theory as explained in the main text, and it could be easily generalized beyond the contexts of molecular graphs considered in this work. To encourage more future work in this area, all datasets and codes used in this paper will be released for public access.
Multi-task learning (MTL) is an important subject in machine learning and artificial intelligence. Its applications to computer vision, signal processing, and speech recognition are ubiquitous. Although this subject has attracted considerable attenti on recently, the performance and robustness of the existing models to different tasks have not been well balanced. This article proposes an MTL model based on the architecture of the variational information bottleneck (VIB), which can provide a more effective latent representation of the input features for the downstream tasks. Extensive observations on three public data sets under adversarial attacks show that the proposed model is competitive to the state-of-the-art algorithms concerning the prediction accuracy. Experimental results suggest that combining the VIB and the task-dependent uncertainties is a very effective way to abstract valid information from the input features for accomplishing multiple tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا