ترغب بنشر مسار تعليمي؟ اضغط هنا

On Packing Low-Diameter Spanning Trees

121   0   0.0 ( 0 )
 نشر من قبل Zihan Tan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Edge connectivity of a graph is one of the most fundamental graph-theoretic concepts. The celebrated tree packing theorem of Tutte and Nash-Williams from 1961 states that every $k$-edge connected graph $G$ contains a collection $cal{T}$ of $lfloor k/2 rfloor$ edge-disjoint spanning trees, that we refer to as a tree packing; the diameter of the tree packing $cal{T}$ is the largest diameter of any tree in $cal{T}$. A desirable property of a tree packing, that is both sufficient and necessary for leveraging the high connectivity of a graph in distributed communication, is that its diameter is low. Yet, despite extensive research in this area, it is still unclear how to compute a tree packing, whose diameter is sublinear in $|V(G)|$, in a low-diameter graph $G$, or alternatively how to show that such a packing does not exist. In this paper we provide first non-trivial upper and lower bounds on the diameter of tree packing. First, we show that, for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, there is a tree packing $cal{T}$ of size $Omega(k)$, diameter $O((101klog n)^D)$, that causes edge-congestion at most $2$. Second, we show that for every $k$-edge connected $n$-vertex graph $G$ of diameter $D$, the diameter of $G[p]$ is $O(k^{D(D+1)/2})$ with high probability, where $G[p]$ is obtained by sampling each edge of $G$ independently with probability $p=Theta(log n/k)$. This provides a packing of $Omega(k/log n)$ edge-disjoint trees of diameter at most $O(k^{(D(D+1)/2)})$ each. We then prove that these two results are nearly tight. Lastly, we show that if every pair of vertices in a graph has $k$ edge-disjoint paths of length at most $D$ connecting them, then there is a tree packing of size $k$, diameter $O(Dlog n)$, causing edge-congestion $O(log n)$. We also provide several applications of low-diameter tree packing in distributed computation.



قيم البحث

اقرأ أيضاً

425 - N Alon , F.V. Fomin , G. Gutin 2008
The {sc Directed Maximum Leaf Out-Branching} problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves i n out-branchings. We show that - every strongly connected $n$-vertex digraph $D$ with minimum in-degree at least 3 has an out-branching with at least $(n/4)^{1/3}-1$ leaves; - if a strongly connected digraph $D$ does not contain an out-branching with $k$ leaves, then the pathwidth of its underlying graph UG($D$) is $O(klog k)$. Moreover, if the digraph is acyclic, the pathwidth is at most $4k$. The last result implies that it can be decided in time $2^{O(klog^2 k)}cdot n^{O(1)}$ whether a strongly connected digraph on $n$ vertices has an out-branching with at least $k$ leaves. On acyclic digraphs the running time of our algorithm is $2^{O(klog k)}cdot n^{O(1)}$.
The minimum degree spanning tree (MDST) problem requires the construction of a spanning tree $T$ for graph $G=(V,E)$ with $n$ vertices, such that the maximum degree $d$ of $T$ is the smallest among all spanning trees of $G$. In this paper, we present two new distributed approximation algorithms for the MDST problem. Our first result is a randomized distributed algorithm that constructs a spanning tree of maximum degree $hat d = O(dlog{n})$. It requires $O((D + sqrt{n}) log^2 n)$ rounds (w.h.p.), where $D$ is the graph diameter, which matches (within log factors) the optimal round complexity for the related minimum spanning tree problem. Our second result refines this approximation factor by constructing a tree with maximum degree $hat d = O(d + log{n})$, though at the cost of additional polylogarithmic factors in the round complexity. Although efficient approximation algorithms for the MDST problem have been known in the sequential setting since the 1990s, our results are first efficient distributed solutions for this problem.
We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in $tilde{O}(n^{4/3}m^{1/2}+n^{2})$ time (The $tilde{O}(cdot)$ notation hides $operatorname{polylog}(n)$ factors). The tree i s sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, $O(n^omega)$. For the special case of unweighted graphs, this improves upon the best previously known running time of $tilde{O}(min{n^{omega},msqrt{n},m^{4/3}})$ for $m gg n^{5/3}$ (Colbourn et al. 96, Kelner-Madry 09, Madry et al. 15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute $epsilon$-approximate effective resistances for a set $S$ of vertex pairs via approximate Schur complements in $tilde{O}(m+(n + |S|)epsilon^{-2})$ time, without using the Johnson-Lindenstrauss lemma which requires $tilde{O}( min{(m + |S|)epsilon^{-2}, m+nepsilon^{-4} +|S|epsilon^{-2}})$ time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isnt sufficiently accurate.
64 - Haitao Wang , Yiming Zhao 2020
We consider the problem of computing the diameter of a unicycle graph (i.e., a graph with a unique cycle). We present an O(n) time algorithm for the problem, where n is the number of vertices of the graph. This improves the previous best O(n log n) t ime solution [Oh and Ahn, ISAAC 2016]. Using this algorithm as a subroutine, we solve the problem of adding a shortcut to a tree so that the diameter of the new graph (which is a unicycle graph) is minimized; our algorithm takes O(n^2 log n) time and O(n) space. The previous best algorithms solve the problem in O(n^2 log^3 n) time and O(n) space [Oh and Ahn, ISAAC 2016], or in O(n^2) time and O(n^2) space [Bil`o, ISAAC 2018].
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online $O(log log n)$-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا