ﻻ يوجد ملخص باللغة العربية
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online $O(log log n)$-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths.
We study multi-finger binary search trees (BSTs), a far-reaching extension of the classical BST model, with connections to the well-studied $k$-server problem. Finger search is a popular technique for speeding up BST operations when a query sequence
We show the $O(log n)$ time extract minimum function of efficient priority queues can be generalized to the extraction of the $k$ smallest elements in $O(k log(n/k))$ time, where we define $log(x)$ as $max(log_2(x), 1)$. We first show heap-ordered tr
Recently Avis and Jordan have demonstrated the efficiency of a simple technique called budgeting for the parallelization of a number of tree search algorithms. The idea is to limit the amount of work that a processor performs before it terminates its
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively, subject to constraints that specific subsets of elements have to be consecutive. While equivalent to each other, PC-trees are conceptually much
We start by summarizing the recently proposed implementation of the first non-blocking concurrent interpolation search tree (C-IST) data structure. We then analyze the individual operations of the C-IST, and show that they are correct and linearizabl