ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrated-photonic characterization of single-photon detectors for use in neuromorphic synapses

119   0   0.0 ( 0 )
 نشر من قبل Sonia Buckley
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. The first set of structures allows direct comparison of detector performance of waveguide-integrated detectors with various widths and lengths. The second type of demonstrated integrated-photonic structure allows us to achieve detection with a high dynamic range. This device allows a small number of detectors to count photons across many orders of magnitude in count rate. However, we find a stray light floor of -30 dB limits the dynamic range to three orders of magnitude. To assess the utility of the detectors for use in synapses in spiking neural systems, we measured the response with average incident photon numbers ranging from less than $10^{-3}$ to greater than $10$. The detector response is identical across this entire range, indicating that synaptic responses based on these detectors will be independent of the number of incident photons in a communication pulse. Such a binary response is ideal for communication in neural systems. We further demonstrate that the response has a linear dependence of output current pulse height on bias current with up to a factor of 1.7 tunability in pulse height. Throughout the work, we compare room-temperature measurements to cryogenic measurements. The agreement indicates room-temperature measurements can be used to determine important properties of the detectors.

قيم البحث

اقرأ أيضاً

In this work, we present a novel device that is a combination of a superconducting nanowire single-photon detector and a superconducting multi-level memory. We show that these devices can be used to count the number of detections through single-photo n to single-flux conversion. Electrical characterization of the memory properties demonstrates single-flux quantum (SFQ) separated states. Optical measurements using attenuated laser pulses with different mean photon number, pulse energies and repetition rates are shown to differentiate single-photon detection from other possible phenomena, such as multi-photon detection and thermal activation. Finally, different geometries and material stacks to improve device performance, as well as arraying methods are discussed.
Integrated quantum photonics, which allows for the development and implementation of chip-scale devices, is recognized as a key enabling technology on the road towards scalable quantum networking schemes. However, many state-of-the-art integrated qua ntum photonics demonstrations still require the coupling of light to external photodetectors. On-chip silicon single-photon avalanche diodes (SPADs) provide a viable solution as they can be seamlessly integrated with photonic components, and operated with high efficiencies and low dark counts at temperatures achievable with thermoelectric cooling. Moreover, they are useful in applications such as LIDAR and low-light imaging. In this paper, we report the design and simulation of silicon waveguide-based SPADs on a silicon-on-insulator platform for visible wavelengths, focusing on two device families with different doping configurations: p-n+ and p-i-n+. We calculate the photon detection efficiency (PDE) and timing jitter at an input wavelength of 640 nm by simulating the avalanche process using a 2D Monte Carlo method, as well as the dark count rate (DCR) at 243 K and 300 K. For our simulated parameters, the optimal p-i-n+ SPADs show the best device performance, with a saturated PDE of 52.4 +/- 0.6% at a reverse bias voltage of 31.5 V, full-width-half-max (FWHM) timing jitter of 10 ps, and a DCR of < 5 counts per second at 243 K.
The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Conventional readout of a superconducting nanowire single-photon detector (SNSPD) sets an upper bound on the output voltage to be the product of the bias current and the load impedance, $I_mathrm{B}times Z_mathrm{load}$, where $Z_mathrm{load}$ is lim ited to 50 $Omega$ in standard r.f. electronics. Here, we break this limit by interfacing the 50 $Omega$ load and the SNSPD using an integrated superconducting transmission line taper. The taper is a transformer that effectively loads the SNSPD with high impedance without latching. It increases the amplitude of the detector output while preserving the fast rising edge. Using a taper with a starting width of 500 nm, we experimentally observed a 3.6$times$ higher pulse amplitude, 3.7$times$ faster slew rate, and 25.1 ps smaller timing jitter. The results match our numerical simulation, which incorporates both the hotspot dynamics in the SNSPD and the distributed nature in the transmission line taper. The taper studied here may become a useful tool to interface high-impedance superconducting nanowire devices to conventional low-impedance circuits.
We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the charge persistence effect, whereby a detector clicks some time after having been illuminated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا