ﻻ يوجد ملخص باللغة العربية
To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy-efficiency. However, instantiating high-performing spiking networks on such hardware remains a significant challenge due to device mismatch and the lack of efficient training algorithms. Here, we introduce a general in-the-loop learning framework based on surrogate gradients that resolves these issues. Using the BrainScaleS-2 neuromorphic system, we show that learning self-corrects for device mismatch resulting in competitive spiking network performance on both vision and speech benchmarks. Our networks display sparse spiking activity with, on average, far less than one spike per hidden neuron and input, perform inference at rates of up to 85 k frames/second, and consume less than 200 mW. In summary, our work sets several new benchmarks for low-energy spiking network processing on analog neuromorphic hardware and paves the way for future on-chip learning algorithms.
This paper presents the concepts behind the BrainScales (BSS) accelerated analog neuromorphic computing architecture. It describes the second-generation BrainScales-2 (BSS-2) version and its most recent in-silico realization, the HICANN-X Application
This paper presents an extension of the BrainScaleS accelerated analog neuromorphic hardware model. The scalable neuromorphic architecture is extended by the support for multi-compartment models and non-linear dendrites. These features are part of a
This work reports a compact behavioral model for gated-synaptic memory. The model is developed in Verilog-A for easy integration into computer-aided design of neuromorphic circuits using emerging memory. The model encompasses various forms of gated s
Since the experimental discovery of magnetic skyrmions achieved one decade ago, there have been significant efforts to bring the virtual particles into all-electrical fully functional devices, inspired by their fascinating physical and topological pr
Neuromorphic computing is a non-von Neumann computing paradigm that performs computation by emulating the human brain. Neuromorphic systems are extremely energy-efficient and known to consume thousands of times less power than CPUs and GPUs. They hav