ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterising authors on the extent of their paper acceptance: A case study of the Journal of High Energy Physics

58   0   0.0 ( 0 )
 نشر من قبل Rima Hazra
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

New researchers are usually very curious about the recipe that could accelerate the chances of their paper getting accepted in a reputed forum (journal/conference). In search of such a recipe, we investigate the profile and peer review text of authors whose papers almost always get accepted at a venue (Journal of High Energy Physics in our current work). We find authors with high acceptance rate are likely to have a high number of citations, high $h$-index, higher number of collaborators etc. We notice that they receive relatively lengthy and positive reviews for their papers. In addition, we also construct three networks -- co-reviewer, co-citation and collaboration network and study the network-centric features and intra- and inter-category edge interactions. We find that the authors with high acceptance rate are more `central in these networks; the volume of intra- and inter-category interactions are also drastically different for the authors with high acceptance rate compared to the other authors. Finally, using the above set of features, we train standard machine learning models (random forest, XGBoost) and obtain very high class wise precision and recall. In a followup discussion we also narrate how apart from the author characteristics, the peer-review system might itself have a role in propelling the distinction among the different categories which could lead to potential discrimination and unfairness and calls for further investigation by the system admins.

قيم البحث

اقرأ أيضاً

Peer-review system has long been relied upon for bringing quality research to the notice of the scientific community and also preventing flawed research from entering into the literature. The need for the peer-review system has often been debated as in numerous cases it has failed in its task and in most of these cases editors and the reviewers were thought to be responsible for not being able to correctly judge the quality of the work. This raises a question Can the peer-review system be improved? Since editors and reviewers are the most important pillars of a reviewing system, we in this work, attempt to address a related question - given the editing/reviewing history of the editors or re- viewers can we identify the under-performing ones?, with citations received by the edited/reviewed papers being used as proxy for quantifying performance. We term such review- ers and editors as anomalous and we believe identifying and removing them shall improve the performance of the peer- review system. Using a massive dataset of Journal of High Energy Physics (JHEP) consisting of 29k papers submitted between 1997 and 2015 with 95 editors and 4035 reviewers and their review history, we identify several factors which point to anomalous behavior of referees and editors. In fact the anomalous editors and reviewers account for 26.8% and 14.5% of the total editors and reviewers respectively and for most of these anomalous reviewers the performance degrades alarmingly over time.
A `peer-review system in the context of judging research contributions, is one of the prime steps undertaken to ensure the quality of the submissions received, a significant portion of the publishing budget is spent towards successful completion of t he peer-review by the publication houses. Nevertheless, the scientific community is largely reaching a consensus that peer-review system, although indispensable, is nonetheless flawed. A very pertinent question therefore is could this system be improved?. In this paper, we attempt to present an answer to this question by considering a massive dataset of around $29k$ papers with roughly $70k$ distinct review reports together consisting of $12m$ lines of review text from the Journal of High Energy Physics (JHEP) between 1997 and 2015. In specific, we introduce a novel textit{reviewer-reviewer interaction network} (an edge exists between two reviewers if they were assigned by the same editor) and show that surprisingly the simple structural properties of this network such as degree, clustering coefficient, centrality (closeness, betweenness etc.) serve as strong predictors of the long-term citations (i.e., the overall scientific impact) of a submitted paper. These features, when plugged in a regression model, alone achieves a high $R^2$ of 0.79 and a low $RMSE$ of 0.496 in predicting the long-term citations. In addition, we also design a set of supporting features built from the basic characteristics of the submitted papers, the authors and the referees (e.g., the popularity of the submitting author, the acceptance rate history of a referee, the linguistic properties laden in the text of the review reports etc.), which further results in overall improvement with $R^2$ of 0.81 and $RMSE$ of 0.46.
CAS Journal Ranking, a ranking system of journals based on the bibliometric indicator of citation impact, has been widely used in meso and macro-scale research evaluation in China since its first release in 2004. The rankings coverage is journals whi ch contained in the Clarivates Journal Citation Reports (JCR). This paper will mainly introduce the upgraded version of the 2019 CAS journal ranking. Aiming at limitations around the indicator and classification system utilized in earlier editions, also the problem of journals interdisciplinarity or multidisciplinarity, we will discuss the improvements in the 2019 upgraded version of CAS journal ranking (1) the CWTS paper-level classification system, a more fine-grained system, has been utilized, (2) a new indicator, Field Normalized Citation Success Index (FNCSI), which ia robust against not only extremely highly cited publications, but also the wrongly assigned document type, has been used, and (3) the calculation of the indicator is from a paper-level. In addition, this paper will present a small part of ranking results and an interpretation of the robustness of the new FNCSI indicator. By exploring more sophisticated methods and indicators, like the CWTS paper-level classification system and the new FNCSI indicator, CAS Journal Ranking will continue its original purpose for responsible research evaluation.
Academic publishers claim that they add value to scholarly communications by coordinating reviews and contributing and enhancing text during publication. These contributions come at a considerable cost: U.S. academic libraries paid $1.7 billion for s erial subscriptions in 2008 alone. Library budgets, in contrast, are flat and not able to keep pace with serial price inflation. We have investigated the publishers value proposition by conducting a comparative study of pre-print papers and their final published counterparts. This comparison had two working assumptions: 1) if the publishers argument is valid, the text of a pre-print paper should vary measurably from its corresponding final published version, and 2) by applying standard similarity measures, we should be able to detect and quantify such differences. Our analysis revealed that the text contents of the scientific papers generally changed very little from their pre-print to final publish
In this Snowmass White Paper, we discuss physics opportunities involving heavy quarkonia at the intensity and energy frontiers of high energy physics. We focus primarily on two specific aspects of quarkonium physics for which significant advances can be expected from experiments at both frontiers. The first aspect is the spectroscopy of charmonium and bottomonium states above the open-heavy-flavor thresholds. Experiments at e^+ e^- colliders and at hadron colliders have discovered many new, unexpected quarkonium states in the last 10 years. Many of these states are surprisingly narrow, and some have electric charge. The observations of these charged quarkonium states are the first definitive discoveries of manifestly exotic hadrons. These results challenge our understanding of the QCD spectrum. The second aspect is the production of heavy quarkonium states with large transverse momentum. Experiments at the LHC are measuring quarkonium production with high statistics at unprecedented values of p_T. Recent theoretical developments may provide a rigorous theoretical framework for inclusive production of quarkonia at large p_T. Experiments at the energy frontier will provide definitive tests of this framework. Experiments at the intensity frontier also provide an opportunity to understand the exclusive production of quarkonium states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا