ﻻ يوجد ملخص باللغة العربية
In this Snowmass White Paper, we discuss physics opportunities involving heavy quarkonia at the intensity and energy frontiers of high energy physics. We focus primarily on two specific aspects of quarkonium physics for which significant advances can be expected from experiments at both frontiers. The first aspect is the spectroscopy of charmonium and bottomonium states above the open-heavy-flavor thresholds. Experiments at e^+ e^- colliders and at hadron colliders have discovered many new, unexpected quarkonium states in the last 10 years. Many of these states are surprisingly narrow, and some have electric charge. The observations of these charged quarkonium states are the first definitive discoveries of manifestly exotic hadrons. These results challenge our understanding of the QCD spectrum. The second aspect is the production of heavy quarkonium states with large transverse momentum. Experiments at the LHC are measuring quarkonium production with high statistics at unprecedented values of p_T. Recent theoretical developments may provide a rigorous theoretical framework for inclusive production of quarkonia at large p_T. Experiments at the energy frontier will provide definitive tests of this framework. Experiments at the intensity frontier also provide an opportunity to understand the exclusive production of quarkonium states.
Neutrino masses are clear evidence for physics beyond the standard model and much more remains to be understood about the neutrino sector. We highlight some of the outstanding questions and research opportunities in neutrino theory. We show that most
Stops with the mass nearly degenerate with the top mass, decaying into tops and soft neutralinos, are usually dubbed stealth stops. Their kinematics looks very similar to that of the standard tops events, which leads to events with little or no exces
Machine learning has been applied to several problems in particle physics research, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and r
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white pap
We make some educated guesses for the extrapolations of typical soft-inclusive (minimum-bias, pileup, underlying-event) observables to proton-proton collisions at center-of-mass energies in the range 13 - 100 TeV. The numbers should be interpreted with (at least) a 10% uncertainty.