ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time estimation of the optically detected magnetic resonance shift in diamond quantum thermometry

71   0   0.0 ( 0 )
 نشر من قبل Masazumi Fujiwara
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in nanodiamonds (NDs). Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals. We analyze the multipoint ODMR measurement techniques (3-, 4-, and 6-point methods) in detail and quantify the amount of measurement artifact owing to several systematic errors derived from instrumental errors of experimental hardware and ODMR spectral shape. We propose a practical approach to minimize the effect of these factors, which allows for measuring accurate temperatures of single NDs during dynamic thermal events. We also discuss integration of noise filters, data estimation protocols, and possible artifacts for further developments in real-time temperature estimation. The present study provides technical details of quantum diamond thermometry and discusses factors that may affect the temperature estimation in biological applications.



قيم البحث

اقرأ أيضاً

In this study, we analyze the operational process of nanodiamond (ND) quantum thermometry based on wide-field detection of optically detected magnetic resonance (ODMR) of nitrogen vacancy centers, and compare its performance with that of confocal ODM R detection. We found that (1) the thermometry results are significantly affected by the shape and size of the camera region of interest (ROI) surrounding the target NDs and that (2) by properly managing the ROI and acquisition parameters of the camera, a temperature precision comparable to confocal detection in living cells can be obtained by wide-field ODMR. Our results are significant to the development of camera-based real-time large-area quantum thermometry of living cells.
We present an experimental and theoretical study of the optically detected magnetic resonance signals for ensembles of negatively charged nitrogen-vacancy (NV) centers in 13C isotopically enriched single-crystal diamond. We observe four broad transit ion peaks with superimposed sharp features at zero magnetic field and study their dependence on applied magnetic field. A theoretical model that reproduces all qualitative features of these spectra is developed. Understanding the magnetic-resonance spectra of NV centers in isotopically enriched diamond is important for emerging applications in nuclear magnetic resonance.
The negatively-charged nitrogen-vacancy (NV) center in diamond is at the frontier of quantum nano-metrology and bio-sensing. Recent attention has focused on the application of high-sensitivity thermometry using the spin resonances of NV centers in na no-diamond to sub-cellular biological and biomedical research. Here, we report a comprehensive investigation of the thermal properties of the centers spin resonances and demonstrate an alternate all-optical NV thermometry technique that exploits the temperature dependence of the centers optical Debye-Waller factor.
A large fraction of quantum science and technology requires low-temperature environments such as those afforded by dilution refrigerators. In these cryogenic environments, accurate thermometry can be difficult to implement, expensive, and often requi res calibration to an external reference. Here, we theoretically propose a primary thermometer based on measurement of a hybrid system consisting of phonons coupled via a magnetostrictive interaction to magnons. Thermometry is based on a cross-correlation measurement in which the spectrum of back-action driven motion is used to scale the thermomechanical motion, providing a direct measurement of the phonon temperature independent of experimental parameters. Combined with a simple low-temperature compatible microwave cavity read-out, this primary thermometer is expected to become a popular thermometer for experiments below 1 K.
Magnetic resonance with ensembles of electron spins is nowadays performed in frequency ranges up to 240 GHz and in corresponding magnetic fields of up to 10 T. However, experiments with single electron and nuclear spins so far only reach into frequen cy ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g. electrical or optical readout). Here, we explore the frequency range up to 90 GHz, respectively magnetic fields of up to $approx 3,$T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular E-band waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators enhance MW fields by spatial and spectral confinement with a MW efficiency of $1.36,mathrm{mT/sqrt{W}}$. We utilize single NV centers as hosts for optically accessible spins, and show, that their properties regarding optical spin readout known from smaller fields (<0.65 T) are retained up to fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout the $^{14}$N nuclear spin shows second-long longitudinal relaxation times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا