ﻻ يوجد ملخص باللغة العربية
The stress-dilatancy relation is of critical importance for constitutive modelling of sand. A new fractional-order stress-dilatancy equation is analytically developed in this study, based on stress-fractional operators. An apparent linear response of the stress-dilatancy behaviour of soil after sufficient shearing is obtained. As the fractional order varies, the derived stress-dilatancy curve and the associated phase transformation state stress ratio shift. But, unlike existing researches, no other specific parameters, except the fractional order, concerning such shift and the state-dependence are required. The developed stress-dilatancy equation is then incorporated into an existing constitutive model for validation. Test results of different sands are simulated and compared, where a good model performance is observed.
We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We
Shear transformations, as fundamental rearrangement events operating in local regions, hold the key of plastic flow of amorphous solids. Despite their importance, the dynamic features of shear transformations are far from clear. Here, we use a colloi
The simplest solvable problem of stress transmission through a static granular material is when the grains are perfectly rigid and have an average coordination number of $bar{z}=d+1$. Under these conditions there exists an analysis of stress which is
We perform $3$D numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be th
Several fluctuation formulas are available for calculating elastic constants from equilibrium correlation functions in computer simulations, but the ones available for simulations at constant pressure exhibit slow convergence properties and cannot be