ﻻ يوجد ملخص باللغة العربية
In a world increasingly dominated by AI applications, an understudied aspect is the carbon and social footprint of these power-hungry algorithms that require copious computation and a trove of data for training and prediction. While profitable in the short-term, these practices are unsustainable and socially extractive from both a data-use and energy-use perspective. This work proposes an ESG-inspired framework combining socio-technical measures to build eco-socially responsible AI systems. The framework has four pillars: compute-efficient machine learning, federated learning, data sovereignty, and a LEEDesque certificate. Compute-efficient machine learning is the use of compressed network architectures that show marginal decreases in accuracy. Federated learning augments the first pillars impact through the use of techniques that distribute computational loads across idle capacity on devices. This is paired with the third pillar of data sovereignty to ensure the privacy of user data via techniques like use-based privacy and differential privacy. The final pillar ties all these factors together and certifies products and services in a standardized manner on their environmental and social impacts, allowing consumers to align their purchase with their values.
Like any technology, AI systems come with inherent risks and potential benefits. It comes with potential disruption of established norms and methods of work, societal impacts and externalities. One may think of the adoption of technology as a form of
Several pieces of work have uncovered performance disparities by conducting disaggregated evaluations of AI systems. We build on these efforts by focusing on the choices that must be made when designing a disaggregated evaluation, as well as some of
In the age of big data, companies and governments are increasingly using algorithms to inform hiring decisions, employee management, policing, credit scoring, insurance pricing, and many more aspects of our lives. AI systems can help us make evidence
We present a demonstration of REACT, a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators. REACT is a data-driven tool with a user-friendly graphical interface. It a
In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence - A European approach to excellence and trust. This paper outlines the ECs policy options for the promotion and adoption of artificial intelli