ﻻ يوجد ملخص باللغة العربية
One of the challenges in analyzing a learning algorithm is the circular entanglement between the objective value and the stochastic noise. This is also known as the chicken and egg phenomenon. Traditionally, people tackle this issue with the special structure of the problem and hence the analysis is difficult to generalize. In this paper, we present a general framework for analyzing high-probability bounds for stochastic dynamics in learning algorithms. Our framework composes standard techniques from probability theory to give a streamlined three-step recipe with a general and flexible principle to tackle the chicken and egg problem. We demonstrate the power and the flexibility of our framework by giving unifying analysis for three very different learning problems with both the last iterate and the strong uniform high probability convergence guarantee. The problems are stochastic gradient descent for strongly convex functions, streaming principal component analysis and linear bandit with stochastic gradient descent updates. We either improve or match the state-of-the-art bounds on all three dynamics.
Metric clustering is fundamental in areas ranging from Combinatorial Optimization and Data Mining, to Machine Learning and Operations Research. However, in a variety of situations we may have additional requirements or knowledge, distinct from the un
We investigate sublinear classical and quantum algorithms for matrix games, a fundamental problem in optimization and machine learning, with provable guarantees. Given a matrix $Ainmathbb{R}^{ntimes d}$, sublinear algorithms for the matrix game $min_
We present Free-MESSAGEp, the first zeroth-order algorithm for convex mean-semideviation-based risk-aware learning, which is also the first three-level zeroth-order compositional stochastic optimization algorithm, whatsoever. Using a non-trivial exte
We develop a new primitive for stochastic optimization: a low-bias, low-cost estimator of the minimizer $x_star$ of any Lipschitz strongly-convex function. In particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn to turn any
We present a data-driven model predictive control (MPC) scheme for chance-constrained Markov jump systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated whi