ﻻ يوجد ملخص باللغة العربية
Understanding the physical processes responsible for accelerating the solar wind requires detailed measurements of the collisionless plasma in the extended solar corona. Some key clues about these processes have come from instruments that combine the power of an ultraviolet (UV) spectrometer with an occulted telescope. This combination enables measurements of ion emission lines far from the bright solar disk, where most of the solar wind acceleration occurs. Although the UVCS instrument on SOHO made several key discoveries, many questions remain unanswered because its capabilities were limited. This white paper summarizes these past achievements and also describes what can be accomplished with next-generation instrumentation of this kind.
In February 2011 we proposed a NASA Explorer Mission of Opportunity program to develop and operate a large-aperture ultraviolet coronagraph spectrometer called the Coronal Physics Investigator (CPI) as an attached International Space Station (ISS) pa
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were f
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas
The investigation of the wind in the solar corona initiated with the observations of the resonantly scattered UV emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying the Doppler dimming diagno
Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously using four different filters around 400