ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Incentivize Other Learning Agents

207   0   0.0 ( 0 )
 نشر من قبل Jiachen Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The challenge of developing powerful and general Reinforcement Learning (RL) agents has received increasing attention in recent years. Much of this effort has focused on the single-agent setting, in which an agent maximizes a predefined extrinsic reward function. However, a long-term question inevitably arises: how will such independent agents cooperate when they are continually learning and acting in a shared multi-agent environment? Observing that humans often provide incentives to influence others behavior, we propose to equip each RL agent in a multi-agent environment with the ability to give rewards directly to other agents, using a learned incentive function. Each agent learns its own incentive function by explicitly accounting for its impact on the learning of recipients and, through them, the impact on its own extrinsic objective. We demonstrate in experiments that such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games, often by finding a near-optimal division of labor. Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.



قيم البحث

اقرأ أيضاً

In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstra te the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.
Collective learning can be greatly enhanced when agents effectively exchange knowledge with their peers. In particular, recent work studying agents that learn to teach other teammates has demonstrated that action advising accelerates team-wide learni ng. However, the prior work has simplified the learning of advising policies by using simple function approximations and only considered advising with primitive (low-level) actions, limiting the scalability of learning and teaching to complex domains. This paper introduces a novel learning-to-teach framework, called hierarchical multiagent teaching (HMAT), that improves scalability to complex environments by using the deep representation for student policies and by advising with more expressive extended action sequences over multiple levels of temporal abstraction. Our empirical evaluations demonstrate that HMAT improves team-wide learning progress in large, complex domains where previous approaches fail. HMAT also learns teaching policies that can effectively transfer knowledge to different teammates with knowledge of different tasks, even when the teammates have heterogeneous action spaces.
This paper seeks to establish a framework for directing a society of simple, specialized, self-interested agents to solve what traditionally are posed as monolithic single-agent sequential decision problems. What makes it challenging to use a decentr alized approach to collectively optimize a central objective is the difficulty in characterizing the equilibrium strategy profile of non-cooperative games. To overcome this challenge, we design a mechanism for defining the learning environment of each agent for which we know that the optimal solution for the global objective coincides with a Nash equilibrium strategy profile of the agents optimizing their own local objectives. The society functions as an economy of agents that learn the credit assignment process itself by buying and selling to each other the right to operate on the environment state. We derive a class of decentralized reinforcement learning algorithms that are broadly applicable not only to standard reinforcement learning but also for selecting options in semi-MDPs and dynamically composing computation graphs. Lastly, we demonstrate the potential advantages of a societys inherent modular structure for more efficient transfer learning.
Non-stationarity is one thorny issue in multi-agent reinforcement learning, which is caused by the policy changes of agents during the learning procedure. Current works to solve this problem have their own limitations in effectiveness and scalability , such as centralized critic and decentralized actor (CCDA), population-based self-play, modeling of others and etc. In this paper, we novelly introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence, which is theoretically proved to be proportional to the joint policy divergence. However, simple policy factorization like mean-field approximation will mislead to larger policy divergence, which can be considered as trust region decomposition dilemma. We model the joint policy as a general Markov random field and propose a trust region decomposition network based on message passing to estimate the joint policy divergence more accurately. The Multi-Agent Mirror descent policy algorithm with Trust region decomposition, called MAMT, is established with the purpose to satisfy $delta$-stationarity. MAMT can adjust the trust region of the local policies adaptively in an end-to-end manner, thereby approximately constraining the divergence of joint policy to alleviate the non-stationary problem. Our method can bring noticeable and stable performance improvement compared with baselines in coordination tasks of different complexity.
The problem of market clearing is to set a price for an item such that quantity demanded equals quantity supplied. In this work, we cast the problem of predicting clearing prices into a learning framework and use the resulting models to perform reven ue optimization in auctions and markets with contextual information. The economic intuition behind market clearing allows us to obtain fine-grained control over the aggressiveness of the resulting pricing policy, grounded in theory. To evaluate our approach, we fit a model of clearing prices over a massive dataset of bids in display ad auctions from a major ad exchange. The learned prices outperform other modeling techniques in the literature in terms of revenue and efficiency trade-offs. Because of the convex nature of the clearing loss function, the convergence rate of our method is as fast as linear regression.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا