ترغب بنشر مسار تعليمي؟ اضغط هنا

VINTERGATAN III: how to reset the metallicity of the Milky Way

87   0   0.0 ( 0 )
 نشر من قبل Florent Renaud
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the cosmological zoom simulation VINTERGATAN, we present a new scenario for the onset of star formation at the metal-poor end of the low-[$alpha$/Fe] sequence in a Milky Way-like galaxy. In this scenario, the galaxy is fueled by two distinct gas flows. One is enriched by outflows from massive galaxies, but not the other. While the former feeds the inner galactic region, the latter fuels an outer gas disk, inclined with respect to the main galactic plane, and with a significantly poorer chemical content. The first passage of the last major merger galaxy triggers tidal compression in the outer disk, which increases the gas density and eventually leads to star formation, at a metallicity 0.75 dex lower than the inner galaxy. This forms the first stars of the low-[$alpha$/Fe] sequence. These in situ stars have halo-like kinematics, similarly to what is observed in the Milky Way, due to the inclination of the outer disk which eventually aligns with the inner one via gravitational torques. We show that this tilting disk scenario is likely to be common in Milky-Way like galaxies. This process implies that the low-[$alpha$/Fe] sequence is populated in situ, simultaneously from two formation channels, in the inner and the outer galaxy, with distinct metallicities. This contrasts with purely sequential scenarios for the assembly of the Milky Way disk and could be tested observationally.



قيم البحث

اقرأ أيضاً

Using the VINTERGATAN cosmological zoom simulation, we explore the contributions of the in situ and accreted material, and the effect of galaxy interactions and mergers in the assembly of a Milky Way-like galaxy. We find that the initial growth phase of galaxy evolution, dominated by repeated major mergers, provides the necessary physical conditions for the assembly of a thick, kinematically hot disk populated by high-[$alpha$/Fe] stars, formed both in situ and in accreted satellite galaxies. We find that the diversity of evolutionary tracks followed by the simulated galaxy and its progenitors leads to very little overlap of the in situ and accreted populations for any given chemical composition. At a given age, the spread in [$alpha$/Fe] abundance ratio results from the diversity of physical conditions in VINTERGATAN and its satellites, with an enhancement in [$alpha$/Fe] found in stars formed during starburst episodes. Later, the cessation of the merger activity promotes the in situ formation of stars in the low-[$alpha$/Fe] regime, in a radially extended, thin and overall kinematically colder disk, thus establishing chemically bimodal thin and thick disks, in line with observations. We draw links between notable features in the [Fe/H] - [$alpha$/Fe] plane with their physical causes, and propose a comprehensive formation scenario explaining self-consistently, in the cosmological context, the main observed properties of the Milky Way.
148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
We use data of $sim$13,000 stars from the SDSS/APOGEE survey to study the shape of the bulge MDF within the region $|ell|leq11^circ$ and $|b|leq13^circ$, and spatially constrained to ${rm R_{GC}leq3.5}$ kpc. We apply Gaussian Mixture Modeling and Non -negative Matrix Factorization decomposition techniques to identify the optimal number and the properties of MDF components. We find the shape and spatial variations of the MDF (at ${rm [Fe/H]geq-1}$ dex) are well represented as a smoothly varying contribution of three overlapping components located at [Fe/H]=+$0.32$, $-0.17$ and $-0.66$ dex. The bimodal MDF found in previous studies is in agreement with our trimodal assessment once the limitations in sample size and individual measurement errors are taken into account. The shape of the MDF and its correlations with kinematics reveal different spatial distributions and kinematical structure for the three components co-existing in the bulge region. We confirm the consensus physical interpretation of metal-rich stars as associated with the secularly evolved disk into a boxy/peanut X-shape bar. On the other hand, metal-intermediate stars could be the product of in-situ formation at high redshift in a gas-rich environment characterized by violent and fast star formation. This interpretation would help to link a present-day structure with those observed in formation in the center of high redshift galaxies. Finally, metal-poor stars may correspond to the metal-rich tail of the population sampled at lower metallicity from the study of RR Lyrae stars. Conversely, they could be associated with the metal-poor tail of the early thick disc.
We present a low metallicity map of the Milky Way consisting of $sim$111,000 giants with $-3.5 lesssim$ [Fe/H] $lesssim -$0.75, based on public photometry from the second data release of the SkyMapper survey. These stars extend out to $sim$7kpc from the solar neighborhood and cover the main Galactic stellar populations, including the thick disk and the inner halo. Notably, this map can reliably differentiate metallicities down to [Fe/H] $sim -3.0$, and thus provides an unprecedented view into the ancient, metal-poor Milky Way. Among the more metal-rich stars in our sample ([Fe/H] $> -2.0$), we recover a clear spatial dependence of decreasing mean metallicity as a function of scale height that maps onto the thick disk component of the Milky Way. When only considering the very metal-poor stars in our sample ([Fe/H] $< -$2), we recover no such spatial dependence in their mean metallicity out to a scale height of $|Z|sim7$ kpc. We find that the metallicity distribution function (MDF) of the most metal-poor stars in our sample ($-3.0 <$ [Fe/H] $< -2.3$) is well fit with an exponential profile with a slope of $Deltalog(N)/Delta$[Fe/H] = 1.52$pm$0.05, and shifts to $Deltalog(N)/Delta$[Fe/H] = 1.53$pm$0.10 after accounting for target selection effects. For [Fe/H] $< -2.3$, the MDF is largely insensitive to scale height $|Z|$ out to $sim5$kpc, showing that very and extremely metal-poor stars are in every galactic component.
We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreemen t. We conclude that this region is complex, since it comprises several stellar components with different properties -- i.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudobulge, a stellar halo and a small classical bulge -- all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا