ﻻ يوجد ملخص باللغة العربية
We present multi-epoch Hubble Space Telescope imaging of the Great Disk Shadow in the Serpens star-forming region. The near-infrared images show strong variability of the disk shadow, revealing dynamics of the inner disk on time scales of months. The Great Shadow is projected onto the Serpens reflection nebula by an unresolved protoplanetary disk surrounding the young intermediate-mass star SVS2/CK3/EC82. Since the shadow extends out to a distance of at least 17,000 au, corresponding to a light travel time of 0.24 years, the images may reveal detailed changes in the disk scale height and position angle on time scales as short as a day, corresponding to the angular resolution of the images, and up to the 1.11 year span between two observing epochs. We present a basic retrieval of temporal changes in the disk density structure, based on the images. We find that the inner disk changes position angle on time scales of months, and that the change is not axisymmetric, suggesting the presence of a non-axisymmetric dynamical forcing on $sim$1,au size scales. We consider two different scenarios, one in which a quadrupolar disk warp orbits the central star, and one in which an unequal-mass binary orbiting out of the disk plane displaces the photo-center relative to the shadowing disk. Continued space-based monitoring of the Serpens Disk Shadow is required to distinguish between these scenarios, and could provide unique, and detailed, insight into the dynamics of inner protoplanetary disks not available through other means.
We present CFHT photometry and IRTF spectroscopy of low-mass candidate members of Serpens South and Serpens Core ($sim$430 pc, $sim$0.5 Myr), identified using a novel combination of photometric filters, known as the W-band method. We report SC182952+
The young and nearby star beta Pictoris (beta Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system
The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (p
We model the ALMA and VLA millimeter radial profiles of the disk around HL Tau to constrain the properties of the dust grains. We adopt the disk evolutionary models of Lynden-Bell & Pringle and calculate their temperature and density structure and em
Aims: Response of a protoplanetary disk to luminosity bursts of various duration is studied with the purpose to determine the effect of the bursts on the strength and sustainability of gravitational instability in the disk. A special emphasis is paid