ﻻ يوجد ملخص باللغة العربية
It is widely known that spin-locking noise-spectroscopy is a powerful technique for the characterization of low-frequency noise mechanisms in superconducting qubits. Here we show that the relaxation rate of the driven spin-locking state of a qubit can be significantly affected by the presence of an off-resonant high-frequency two-level-system defect. Thus, both low- and high-frequency defects should be taken into account in the interpretation of spin-locking measurements and other types of driven-state noise-spectroscopy.
Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, whi
We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in diff
We experimentally observe Floquet Raman transitions in the weakly driven solid state spin system of nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model, and allows us to observe cohe
We explore the use of weak quantum measurements for single-qubit quantum state tomography processes. Weak measurements are those where the coupling between the qubit and the measurement apparatus is weak; this results in the quantum state being distu
We study a system of a single qubit (or a few qubits) interacting with a soft-mode bosonic field. Considering an extended version of the Rabi model with both parity-conserving and parity-violating interactions, we disclose a complex arrangement of qu