ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Floquet Raman transition in a driven solid-state spin system

109   0   0.0 ( 0 )
 نشر من قبل Jianming Cai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally observe Floquet Raman transitions in the weakly driven solid state spin system of nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model, and allows us to observe coherent spin state transfer arising from Raman transition mediated by Floquet synthetic levels. It also leads to the prediction of analog photon-assisted Floquet Raman transition and dynamical localisation in a driven two-level quantum system. The demonstrated rich Floquet dynamics offers new capabilities to achieve effective Floquet coherent control of a quantum system with potential applications in various types of quantum technologies based on driven quantum dynamics. In particular, the Floquet-Raman system may be used as a quantum simulator for the physics of periodically driven systems.



قيم البحث

اقرأ أيضاً

The quantum Zeno effect, i.e. the inhibition of coherent quantum dynamics by projective measurements is one of the most intriguing predictions of quantum mechanics. Here we experimentally demonstrate the quantum Zeno effect by inhibiting the microwav e driven coherent spin dynamics between two ground state spin levels of the nitrogen vacancy center in diamond nano-crystals. Our experiments are supported by a detailed analysis of the population dynamics via a semi-classical model.
Periodically driven Floquet quantum systems provide a promising platform to investigate novel physics out of equilibrium. Unfortunately, the drive generically heats up the system to a featureless infinite temperature state. For large driving frequenc y, the heat absorption rate is predicted to be exponentially small, giving rise to a long-lived prethermal regime which exhibits all the intriguing properties of Floquet systems. Here we experimentally observe Floquet prethermalization using nuclear magnetic resonance techniques. We first show the relaxation of a far-from-equilibrium initial state to a long-lived prethermal state, well described by the time-independent prethermal Hamiltonian. By measuring the autocorrelation of this prethermal Hamiltonian we can further experimentally confirm the predicted exponentially slow heating rate. More strikingly, we find that in the timescale when the effective Hamiltonian picture breaks down, the Floquet system still possesses other quasi-conservation laws. Our results demonstrate that it is possible to realize robust Floquet engineering, thus enabling the experimental observation of non-trivial Floquet phases of matter.
It is widely known that spin-locking noise-spectroscopy is a powerful technique for the characterization of low-frequency noise mechanisms in superconducting qubits. Here we show that the relaxation rate of the driven spin-locking state of a qubit ca n be significantly affected by the presence of an off-resonant high-frequency two-level-system defect. Thus, both low- and high-frequency defects should be taken into account in the interpretation of spin-locking measurements and other types of driven-state noise-spectroscopy.
Quantum control of solid-state spin qubits typically involves pulses in the microwave domain, drawing from the well-developed toolbox of magnetic resonance spectroscopy. Driving a solid-state spin by optical means offers a high-speed alternative, whi ch in the presence of limited spin coherence makes it the preferred approach for high-fidelity quantum control. Bringing the full versatility of magnetic spin resonance to the optical domain requires full phase and amplitude control of the optical fields. Here, we imprint a programmable microwave sequence onto a laser field and perform electron spin resonance in a semiconductor quantum dot via a two-photon Raman process. We show that this approach yields full SU(2) spin control with over 98% pi-rotation fidelity. We then demonstrate its versatility by implementing a particular multi-axis control sequence, known as spin locking. Combined with electron-nuclear Hartmann-Hahn resonances which we also report in this work, this sequence will enable efficient coherent transfer of a quantum state from the electron spin to the mesoscopic nuclear ensemble.
183 - Hui Wang , Jian Qin , Si Chen 2020
Intensity squeezing, i.e., photon number fluctuations below the shot noise limit, is a fundamental aspect of quantum optics and has wide applications in quantum metrology. It was predicted in 1979 that the intensity squeezing could be observed in res onance fluorescence from a two-level quantum system. Yet, its experimental observation in solid states was hindered by inefficiencies in generating, collecting and detecting resonance fluorescence. Here, we report the intensity squeezing in a single-mode fibre-coupled resonance fluorescence single-photon source based on a quantum dot-micropillar system. We detect pulsed single-photon streams with 22.6% system efficiency, which show subshot-noise intensity fluctuation with an intensity squeezing of 0.59 dB. We estimate a corrected squeezing of 3.29 dB at the first lens. The observed intensity squeezing provides the last piece of the fundamental picture of resonance fluorescence; which can be used as a new standard for optical radiation and in scalable quantum metrology with indistinguishable single photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا