ترغب بنشر مسار تعليمي؟ اضغط هنا

Sublinear Algorithms and Lower Bounds for Metric TSP Cost Estimation

165   0   0.0 ( 0 )
 نشر من قبل Yu Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of designing sublinear time algorithms for estimating the cost of a minimum metric traveling salesman (TSP) tour. Specifically, given access to a $n times n$ distance matrix $D$ that specifies pairwise distances between $n$ points, the goal is to estimate the TSP cost by performing only sublinear (in the size of $D$) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any $varepsilon > 0$, there exists an $tilde{O}(n/varepsilon^{O(1)})$ time algorithm that returns a $(1 + varepsilon)$-approximate estimate of the MST cost. This result immediately implies an $tilde{O}(n/varepsilon^{O(1)})$ time algorithm to estimate the TSP cost to within a $(2 + varepsilon)$ factor for any $varepsilon > 0$. However, no $o(n^2)$ time algorithms are known to approximate metric TSP to a factor that is strictly better than $2$. On the other hand, there were also no known barriers that rule out the existence of $(1 + varepsilon)$-approximate estimation algorithms for metric TSP with $tilde{O}(n)$ time for any fixed $varepsilon > 0$. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. We also show that the problem of estimating metric TSP cost is closely connected to the problem of estimating the size of a maximum matching in a graph.



قيم البحث

اقرأ أيضاً

We consider the problem of testing graph cluster structure: given access to a graph $G=(V, E)$, can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a ge neralization of the well-studied problem of testing graph expansion, where one wants to distinguish between the graph having good expansion (i.e. being a good single cluster) and the graph having a sparse cut (i.e. being a union of at least two clusters). A recent work of Czumaj, Peng, and Sohler (STOC15) gave an ingenious sublinear time algorithm for testing $k$-clusterability in time $tilde{O}(n^{1/2} text{poly}(k))$: their algorithm implicitly embeds a random sample of vertices of the graph into Euclidean space, and then clusters the samples based on estimates of Euclidean distances between the points. This yields a very efficient testing algorithm, but only works if the cluster structure is very strong: it is necessary to assume that the gap between conductances of accepted and rejected graphs is at least logarithmic in the size of the graph $G$. In this paper we show how one can leverage more refined geometric information, namely angles as opposed to distances, to obtain a sublinear time tester that works even when the gap is a sufficiently large constant. Our tester is based on the singular value decomposition of a natural matrix derived from random walk transition probabilities from a small sample of seed nodes. We complement our algorithm with a matching lower bound on the query complexity of testing clusterability. Our lower bound is based on a novel property testing problem, which we analyze using Fourier analytic tools. As a byproduct of our techniques, we also achieve new lower bounds for the problem of approximating MAX-CUT value in sublinear time.
We present new lower bounds that show that a polynomial number of passes are necessary for solving some fundamental graph problems in the streaming model of computation. For instance, we show that any streaming algorithm that finds a weighted minimum $s$-$t$ cut in an $n$-vertex undirected graph requires $n^{2-o(1)}$ space unless it makes $n^{Omega(1)}$ passes over the stream. To prove our lower bounds, we introduce and analyze a new four-player communication problem that we refer to as the hidden-pointer chasing problem. This is a problem in spirit of the standard pointer chasing problem with the key difference that the pointers in this problem are hidden to players and finding each one of them requires solving another communication problem, namely the set intersection problem. Our lower bounds for graph problems are then obtained by reductions from the hidden-pointer chasing problem. Our hidden-pointer chasing problem appears flexible enough to find other applications and is therefore interesting in its own right. To showcase this, we further present an interesting application of this problem beyond streaming algorithms. Using a reduction from hidden-pointer chasing, we prove that any algorithm for submodular function minimization needs to make $n^{2-o(1)}$ value queries to the function unless it has a polynomial degree of adaptivity.
Robust optimization is a widely studied area in operations research, where the algorithm takes as input a range of values and outputs a single solution that performs well for the entire range. Specifically, a robust algorithm aims to minimize regret, defined as the maximum difference between the solutions cost and that of an optimal solution in hindsight once the input has been realized. For graph problems in P, such as shortest path and minimum spanning tree, robust polynomial-time algorithms that obtain a constant approximation on regret are known. In this paper, we study robust algorithms for minimizing regret in NP-hard graph optimization problems, and give constant approximations on regret for the classical traveling salesman and Steiner tree problems.
Given a metric $(V,d)$ and a $textsf{root} in V$, the classic $textsf{$k$-TSP}$ problem is to find a tour originating at the $textsf{root}$ of minimum length that visits at least $k$ nodes in $V$. In this work, motivated by applications where the inp ut to an optimization problem is uncertain, we study two stochast
89 - Sepehr Assadi , Ran Raz 2020
We prove that any two-pass graph streaming algorithm for the $s$-$t$ reachability problem in $n$-vertex directed graphs requires near-quadratic space of $n^{2-o(1)}$ bits. As a corollary, we also obtain near-quadratic space lower bounds for several o ther fundamental problems including maximum bipartite matching and (approximate) shortest path in undirected graphs. Our results collectively imply that a wide range of graph problems admit essentially no non-trivial streaming algorithm even when two passes over the input is allowed. Prior to our work, such impossibility results were only known for single-pass streaming algorithms, and the best two-pass lower bounds only ruled out $o(n^{7/6})$ space algorithms, leaving open a large gap between (trivial) upper bounds and lower bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا