ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy For Free: Wireless Federated Learning Via Uncoded Transmission With Adaptive Power Control

133   0   0.0 ( 0 )
 نشر من قبل Dongzhu Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated Learning (FL) refers to distributed protocols that avoid direct raw data exchange among the participating devices while training for a common learning task. This way, FL can potentially reduce the information on the local data sets that is leaked via communications. In order to provide formal privacy guarantees, however, it is generally necessary to put in place additional masking mechanisms. When FL is implemented in wireless systems via uncoded transmission, the channel noise can directly act as a privacy-inducing mechanism. This paper demonstrates that, as long as the privacy constraint level, measured via differential privacy (DP), is below a threshold that decreases with the signal-to-noise ratio (SNR), uncoded transmission achieves privacy for free, i.e., without affecting the learning performance. More generally, this work studies adaptive power allocation (PA) for decentralized gradient descent in wireless FL with the aim of minimizing the learning optimality gap under privacy and power constraints. Both orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) transmission with over-the-air-computing are studied, and solutions are obtained in closed form for an offline optimization setting. Furthermore, heuristic online methods are proposed that leverage iterative one-step-ahead optimization. The importance of dynamic PA and the potential benefits of NOMA versus OMA are demonstrated through extensive simulations.

قيم البحث

اقرأ أيضاً

Most works on federated learning (FL) focus on the most common frequentist formulation of learning whereby the goal is minimizing the global empirical loss. Frequentist learning, however, is known to be problematic in the regime of limited data as it fails to quantify epistemic uncertainty in prediction. Bayesian learning provides a principled solution to this problem by shifting the optimization domain to the space of distribution in the model parameters. This paper studies for the first time Bayesian FL in wireless systems by proposing and analyzing a gradient-based Markov Chain Monte Carlo (MCMC) method -- Wireless Federated Langevin Monte Carlo (WFLMC). The key idea of this work is to repurpose channel noise for the double role of seed randomness for MCMC sampling and of privacy-preserving mechanism. To this end, based on the analysis of the Wasserstein distance between sample distribution and global posterior distribution under privacy and power constraints, we introduce a power allocation strategy as the solution of a convex program. The analysis identifies distinct operating regimes in which the performance of the system is power-limited, privacy-limited, or limited by the requirement of MCMC sampling. Both analytical and simulation results demonstrate that, if the channel noise is properly accounted for under suitable conditions, it can be fully repurposed for both MCMC sampling and privacy preservation, obtaining the same performance as in an ideal communication setting that is not subject to privacy constraints.
A fundamental challenge in wireless heterogeneous networks (HetNets) is to effectively utilize the limited transmission and storage resources in the presence of increasing deployment density and backhaul capacity constraints. To alleviate bottlenecks and reduce resource consumption, we design optimal caching and power control algorithms for multi-hop wireless HetNets. We formulate a joint optimization framework to minimize the average transmission delay as a function of the caching variables and the signal-to-interference-plus-noise ratios (SINR) which are determined by the transmission powers, while explicitly accounting for backhaul connection costs and the power constraints. Using convex relaxation and rounding, we obtain a reduced-complexity formulation (RCF) of the joint optimization problem, which can provide a constant factor approximation to the globally optimal solution. We then solve RCF in two ways: 1) alternating optimization of the power and caching variables by leveraging biconvexity, and 2) joint optimization of power control and caching. We characterize the necessary (KKT) conditions for an optimal solution to RCF, and use strict quasi-convexity to show that the KKT points are Pareto optimal for RCF. We then devise a subgradient projection algorithm to jointly update the caching and power variables, and show that under appropriate conditions, the algorithm converges at a linear rate to the local minima of RCF, under general SINR conditions. We support our analytical findings with results from extensive numerical experiments.
This paper considers a wireless network with a base station (BS) conducting timely status updates to multiple clients via adaptive non-orthogonal multiple access (NOMA)/orthogonal multiple access (OMA). Specifically, the BS is able to adaptively swit ch between NOMA and OMA for the downlink transmission to optimize the information freshness of the network, characterized by the Age of Information (AoI) metric. If the BS chooses OMA, it can only serve one client within each time slot and should decide which client to serve; if the BS chooses NOMA, it can serve more than one client at the same time and needs to decide the power allocated to the served clients. For the simple two-client case, we formulate a Markov Decision Process (MDP) problem and develop the optimal policy for the BS to decide whether to use NOMA or OMA for each downlink transmission based on the instantaneous AoI of both clients. The optimal policy is shown to have a switching-type property with obvious decision switching boundaries. A near-optimal policy with lower computation complexity is also devised. For the more general multi-client scenario, inspired by the proposed near-optimal policy, we formulate a nonlinear optimization problem to determine the optimal power allocated to each client by maximizing the expected AoI drop of the network in each time slot. We resolve the formulated problem by approximating it as a convex optimization problem. We also derive the upper bound of the gap between the approximate convex problem and the original nonlinear, nonconvex problem. Simulation results validate the effectiveness of the adopted approximation. The performance of the adaptive NOMA/OMA scheme by solving the convex optimization is shown to be close to that of max-weight policy solved by exhaustive search...
We consider a wireless federated learning system where multiple data holder edge devices collaborate to train a global model via sharing their parameter updates with an honest-but-curious parameter server. We demonstrate that the inherent hardware-in duced distortion perturbing the model updates of the edge devices can be exploited as a privacy-preserving mechanism. In particular, we model the distortion as power-dependent additive Gaussian noise and present a power allocation strategy that provides privacy guarantees within the framework of differential privacy. We conduct numerical experiments to evaluate the performance of the proposed power allocation scheme under different levels of hardware impairments.
Conventional frequentist learning, as assumed by existing federated learning protocols, is limited in its ability to quantify uncertainty, incorporate prior knowledge, guide active learning, and enable continual learning. Bayesian learning provides a principled approach to address all these limitations, at the cost of an increase in computational complexity. This paper studies distributed Bayesian learning in a wireless data center setting encompassing a central server and multiple distributed workers. Prior work on wireless distributed learning has focused exclusively on frequentist learning, and has introduced the idea of leveraging uncoded transmission to enable over-the-air computing. Unlike frequentist learning, Bayesian learning aims at evaluating approximations or samples from a global posterior distribution in the model parameter space. This work investigates for the first time the design of distributed one-shot, or embarrassingly parallel, Bayesian learning protocols in wireless data centers via consensus Monte Carlo (CMC). Uncoded transmission is introduced not only as a way to implement over-the-air computing, but also as a mechanism to deploy channel-driven MC sampling: Rather than treating channel noise as a nuisance to be mitigated, channel-driven sampling utilizes channel noise as an integral part of the MC sampling process. A simple wireless CMC scheme is first proposed that is asymptotically optimal under Gaussian local posteriors. Then, for arbitrary local posteriors, a variational optimization strategy is introduced. Simulation results demonstrate that, if properly accounted for, channel noise can indeed contribute to MC sampling and does not necessarily decrease the accuracy level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا