ﻻ يوجد ملخص باللغة العربية
The rise and fall of the superconducting transition temperature $T_c$ upon tuning carrier density or external parameters, such as pressure or magnetic field, is ubiquitously observed in a wide range of quantum materials. In order to investigate such domes of $T_c$, we go beyond the prototypical attractive Hubbard model, and consider a lattice model of electrons coupled via instantaneous, spatially extended, attractive interactions. By numerically solving the mean-field equations, as well as going beyond mean field theory using a functional renormalization group approach, we find that for a characteristic interaction range $ell$, there exists a dome in $T_c$ around $k_F ell ! sim ! {mathcal{O}}(1)$. For multiband systems, our mean field theory shows the presence of additional domes in the vicinity of Lifshitz transitions. Our results hold in both two and three dimensions and can be intuitively understood from the geometric relation between the Fermi surface and the interaction range. Our model may be relevant for domes of $T_c$ in dilute weakly coupled superconductors or in engineered cold atom systems.
A single impurity problem is investigated for multiband s-wave superconductors with different sign order parameters (+-s-wave superconductors) suggested in Fe-pnictide superconductors. Not only intraband but also interband scattering is considered at
Disorder - impurities and defects violating an ideal order - is always present in solids. It can result in interesting and sometimes unexpected effects in multiband superconductors. Especially if the superconductivity is unconventional thus having ot
Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-delta}. Measurements were perfo
We consider a problem of superconductivity coexistence with the spin-density-wave order in disordered multiband metals. It is assumed that random variations of the disorder potential on short length scales render the interactions between electrons to
In search of the origin of superconductivity in diluted rhenium superconductors and their significantly enhanced $T_c$ compared to pure Be (0.026 K), we investigated the intermetallic ReBe$_{22}$ compound, mostly by means of muon-spin rotation/relaxa