ﻻ يوجد ملخص باللغة العربية
For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the ``kinetic term of the gluon propagator. The exact solutions of these equations exhibit poles at the origin, which are incompatible with the physical answer, known to diverge only logarithmically; their elimination hinges on the validity of two integral conditions that we denominate ``asymmetric and ``symmetric sum rules, depending on the kinematics employed in their derivation. The corresponding integrands contain components of the three-gluon vertex and the ghost-gluon kernel, whose dynamics are constrained when the sum rules are imposed. For the numerical treatment we single out the asymmetric sum rule, given that its support stems predominantly from low and intermediate energy regimes of the defining integral, which are physically more interesting. Adopting a combined approach based on Schwinger-Dyson equations and lattice simulations, we demonstrate how the sum rule clearly favors the suppression of an effective form factor entering in the definition of its kernel. The results of the present work offer an additional vantage point into the rich and complex structure of the three-point sector of QCD.
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirm
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD
Different decompositions of the nucleon mass, in terms of the masses and energies of the underlying constituents, have been proposed in the literature. We explore the corresponding sum rules in quantum electrodynamics for an electron at one-loop orde
While the QCD Lagrangian as the whole is only chirally symmetric, its electric part has larger chiral-spin SU(2)_{CS} and SU(2N_F) symmetries. This allows separation of the electric and magnetic interactions in a given reference frame. Artificial tru
We briefly report the modern status of heavy quark sum rules (HQSR) based on stability criteria by emphasizing the recent progresses for determining the QCD parameters (alpha_s, m_{c,b} and gluon condensates)where their correlations have been taken i