ﻻ يوجد ملخص باللغة العربية
The synchronization of charge oscillations after photoexcitation that has been realized through the emergence of an electronic breathing mode on dimer lattices is studied here from the viewpoint of the competition between interactions and randomness. We employ an extended Hubbard model at three-quarter filling on a simple dimer lattice and add random numbers to all transfer integrals between nearest-neighbor sites. Photoinduced dynamics are calculated using the time-dependent Schrodinger equation by the exact diagonalization method. Although the randomness tends to unsynchronize charge oscillations on different bonds during and after photoexcitation, sufficiently strong on-site repulsion $U$ overcomes this effect and synchronizes these charge oscillations some time after strong photoexcitation. The degree of synchronization is evaluated using an order parameter that is derived from the time profiles of the current densities on all bonds. As to the nearest-neighbor interaction $V$, if $V$ is weakly attractive, it increases the order parameter by facilitating the charge oscillations. The relevance of these findings to previously reported experimental and theoretical results for the organic conductor $kappa$-(bis[ethylenedithio]tetrathiafulvalene)$_2$Cu[N(CN)$_2$]Br is discussed.
We discuss the mechanism and the conditions for the appearance of synchronized charge oscillations which have been observed experimentally and theoretically after strong photoexcitation of dimerized systems. In the Hubbard model with on-site repulsio
Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrodinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for $ka
The Holstein Model (HM) describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At high
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particul
The EPR spectra along different crystallographic axes for single crystals of CuGeO3 containing 1% of Fe impurity have been studied in the frequency range 60-360 GHz at temperatures 0.5-30 K. The analysis based on the Oshikawa-Affleck (OA) theory sugg