ﻻ يوجد ملخص باللغة العربية
Graph neural networks (GNNs) have attracted much attention because of their excellent performance on tasks such as node classification. However, there is inadequate understanding on how and why GNNs work, especially for node representation learning. This paper aims to provide a theoretical framework to understand GNNs, specifically, spectral graph convolutional networks and graph attention networks, from graph signal denoising perspectives. Our framework shows that GNNs are implicitly solving graph signal denoising problems: spectral graph convolutions work as denoising node features, while graph attentions work as denoising edge weights. We also show that a linear self-attention mechanism is able to compete with the state-of-the-art graph attention methods. Our theoretical results further lead to two new models, GSDN-F and GSDN-EF, which work effectively for graphs with noisy node features and/or noisy edges. We validate our theoretical findings and also the effectiveness of our new models by experiments on benchmark datasets. The source code is available at url{https://github.com/fuguoji/GSDN}.
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph
This paper builds on the connection between graph neural networks and traditional dynamical systems. We propose continuous graph neural networks (CGNN), which generalise existing graph neural networks with discrete dynamics in that they can be viewed
Graph Neural Networks (GNNs) are widely used deep learning models that learn meaningful representations from graph-structured data. Due to the finite nature of the underlying recurrent structure, current GNN methods may struggle to capture long-range
Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an excitin
Despite the wide application of Graph Convolutional Network (GCN), one major limitation is that it does not benefit from the increasing depth and suffers from the oversmoothing problem. In this work, we first characterize this phenomenon from the inf