ﻻ يوجد ملخص باللغة العربية
For any bounded, smooth domain $Omegasubset R^2$, %(or $Omega=R^2$), we will establish the weak compactness property of solutions to the simplified Ericksen-Leslie system for both uniaxial and biaxial nematics, and the convergence of weak solutions of the Ginzburg-Landau type nematic liquid crystal flow to a weak solution of the simplified Ericksen-Leslie system as the parameter tends to zero. This is based on the compensated compactness property of the Ericksen stress tensors, which is obtained by the $L^p$-estimate of the Hopf differential for the Ericksen-Leslie system and the Pohozaev type argument for the Ginzburg-Landau type nematic liquid crystal flow.
For any smooth domain $Omegasubset mathbb{R}^3$, we establish the existence of a global weak solution $(mathbf{u},mathbf{d}, theta)$ to the simplified, non-isothermal Ericksen-Leslie system modeling the hydrodynamic motion of nematic liquid crystals
For $l$-homogeneous linear differential operators $mathcal{A}$ of constant rank, we study the implication $v_jrightharpoonup v$ in $X$ and $mathcal{A} v_jrightarrow mathcal{A} v$ in $W^{-l}Y$ implies $F(v_j)rightsquigarrow F(v)$ in $Z$, where $F$ is
We consider a full Navier-Stokes and $Q$-tensor system for incompressible liquid crystal flows of nematic type. In the two dimensional periodic case, we prove the existence and uniqueness of global strong solutions that are uniformly bounded in time.
We consider the simplified Ericksen-Leslie model in three dimensional bounded Lipschitz domains. Applying a semilinear approach, we prove local and global well-posedness (assuming a smallness condition on the initial data) in critical spaces for init
Topological defects are one of the most conspicuous features of liquid crystals. In two dimensional nematics, they have been shown to behave effectively as particles with both, charge and orientation, which dictate their interactions. Here, we study