ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Learning Through Cross-Task Consistency

161   0   0.0 ( 0 )
 نشر من قبل Amir Zamir
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual perception entails solving a wide set of tasks, e.g., object detection, depth estimation, etc. The predictions made for multiple tasks from the same image are not independent, and therefore, are expected to be consistent. We propose a broadly applicable and fully computational method for augmenting learning with Cross-Task Consistency. The proposed formulation is based on inference-path invariance over a graph of arbitrary tasks. We observe that learning with cross-task consistency leads to more accurate predictions and better generalization to out-of-distribution inputs. This framework also leads to an informative unsupervised quantity, called Consistency Energy, based on measuring the intrinsic consistency of the system. Consistency Energy correlates well with the supervised error (r=0.67), thus it can be employed as an unsupervised confidence metric as well as for detection of out-of-distribution inputs (ROC-AUC=0.95). The evaluations are performed on multiple datasets, including Taskonomy, Replica, CocoDoom, and ApolloScape, and they benchmark cross-task consistency versus various baselines including conventional multi-task learning, cycle consistency, and analytical consistency.



قيم البحث

اقرأ أيضاً

In this work we present a novel, robust transition generation technique that can serve as a new tool for 3D animators, based on adversarial recurrent neural networks. The system synthesizes high-quality motions that use temporally-sparse keyframes as animation constraints. This is reminiscent of the job of in-betweening in traditional animation pipelines, in which an animator draws motion frames between provided keyframes. We first show that a state-of-the-art motion prediction model cannot be easily converted into a robust transition generator when only adding conditioning information about future keyframes. To solve this problem, we then propose two novel additive embedding modifiers that are applied at each timestep to latent representations encoded inside the networks architecture. One modifier is a time-to-arrival embedding that allows variations of the transition length with a single model. The other is a scheduled target noise vector that allows the system to be robust to target distortions and to sample different transitions given fixed keyframes. To qualitatively evaluate our method, we present a custom MotionBuilder plugin that uses our trained model to perform in-betweening in production scenarios. To quantitatively evaluate performance on transitions and generalizations to longer time horizons, we present well-defined in-betweening benchmarks on a subset of the widely used Human3.6M dataset and on LaFAN1, a novel high quality motion capture dataset that is more appropriate for transition generation. We are releasing this new dataset along with this work, with accompanying code for reproducing our baseline results.
We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video.While previous methods rely on either rigging or inverse kinematics (IK) to associate a consistent skeleton with temporally coherent joint rotations, our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation. At the crux of our approach lies a deep neural network with embedded kinematic priors, which decomposes sequences of 2D joint positions into two separate attributes: a single, symmetric, skeleton, encoded by bone lengths, and a sequence of 3D joint rotations associated with global root positions and foot contact labels. These attributes are fed into an integrated forward kinematics (FK) layer that outputs 3D positions, which are compared to a ground truth. In addition, an adversarial loss is applied to the velocities of the recovered rotations, to ensure that they lie on the manifold of natural joint rotations. The key advantage of our approach is that it learns to infer natural joint rotations directly from the training data, rather than assuming an underlying model, or inferring them from joint positions using a data-agnostic IK solver. We show that enforcing a single consistent skeleton along with temporally coherent joint rotations constrains the solution space, leading to a more robust handling of self-occlusions and depth ambiguities.
Fast appearance variations and the distractions of similar objects are two of the most challenging problems in visual object tracking. Unlike many existing trackers that focus on modeling only the target, in this work, we consider the emph{transient variations of the whole scene}. The key insight is that the object correspondence and spatial layout of the whole scene are consistent (i.e., global structure consistency) in consecutive frames which helps to disambiguate the target from distractors. Moreover, modeling transient variations enables to localize the target under fast variations. Specifically, we propose an effective and efficient short-term model that learns to exploit the global structure consistency in a short time and thus can handle fast variations and distractors. Since short-term modeling falls short of handling occlusion and out of the views, we adopt the long-short term paradigm and use a long-term model that corrects the short-term model when it drifts away from the target or the target is not present. These two components are carefully combined to achieve the balance of stability and plasticity during tracking. We empirically verify that the proposed tracker can tackle the two challenging scenarios and validate it on large scale benchmarks. Remarkably, our tracker improves state-of-the-art-performance on VOT2018 from 0.440 to 0.460, GOT-10k from 0.611 to 0.640, and NFS from 0.619 to 0.629.
Cross-modal retrieval is generally performed by projecting and aligning the data from two different modalities onto a shared representation space. This shared space often also acts as a bridge for translating the modalities. We address the problem of learning such representation space by proposing and exploiting the property of Discriminative Semantic Transitive Consistency -- ensuring that the data points are correctly classified even after being transferred to the other modality. Along with semantic transitive consistency, we also enforce the traditional distance minimizing constraint which makes the projections of the corresponding data points from both the modalities to come closer in the representation space. We analyze and compare the contribution of both the loss terms and their interaction, for the task. In addition, we incorporate semantic cycle-consistency for each of the modality. We empirically demonstrate better performance owing to the different components with clear ablation studies. We also provide qualitative results to support the proposals.
We present a method that processes 3D point clouds by performing graph convolution operations across shapes. In this manner, point descriptors are learned by allowing interaction and propagation of feature representations within a shape collection. T o enable this form of non-local, cross-shape graph convolution, our method learns a pairwise point attention mechanism indicating the degree of interaction between points on different shapes. Our method also learns to create a graph over shapes of an input collection whose edges connect shapes deemed as useful for performing cross-shape convolution. The edges are also equipped with learned weights indicating the compatibility of each shape pair for cross-shape convolution. Our experiments demonstrate that this interaction and propagation of point representations across shapes make them more discriminative. In particular, our results show significantly improved performance for 3D point cloud semantic segmentation compared to conventional approaches, especially in cases with the limited number of training examples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا