ﻻ يوجد ملخص باللغة العربية
This work presents a new algorithm for empirical risk minimization. The algorithm bridges the gap between first- and second-order methods by computing a search direction that uses a second-order-type update in one subspace, coupled with a scaled steepest descent step in the orthogonal complement. To this end, partial curvature information is incorporated to help with ill-conditioning, while simultaneously allowing the algorithm to scale to the large problem dimensions often encountered in machine learning applications. Theoretical results are presented to confirm that the algorithm converges to a stationary point in both the strongly convex and nonconvex cases. A stochastic variant of the algorithm is also presented, along with corresponding theoretical guarantees. Numerical results confirm the strengths of the new approach on standard machine learning problems.
A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the
Sparse optimization is a central problem in machine learning and computer vision. However, this problem is inherently NP-hard and thus difficult to solve in general. Combinatorial search methods find the global optimal solution but are confined to sm
A gradient-free deterministic method is developed to solve global optimization problems for Lipschitz continuous functions defined in arbitrary path-wise connected compact sets in Euclidean spaces. The method can be regarded as granular sieving with
We consider the minimization problem with the truncated quadratic regularization with gradient operator, which is a nonsmooth and nonconvex problem. We cooperated the classical preconditioned iterations for linear equations into the nonlinear differe
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a wors