ترغب بنشر مسار تعليمي؟ اضغط هنا

EPARS: Early Prediction of At-risk Students with Online and Offline Learning Behaviors

123   0   0.0 ( 0 )
 نشر من قبل Yu Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Early prediction of students at risk (STAR) is an effective and significant means to provide timely intervention for dropout and suicide. Existing works mostly rely on either online or offline learning behaviors which are not comprehensive enough to capture the whole learning processes and lead to unsatisfying prediction performance. We propose a novel algorithm (EPARS) that could early predict STAR in a semester by modeling online and offline learning behaviors. The online behaviors come from the log of activities when students use the online learning management system. The offline behaviors derive from the check-in records of the library. Our main observations are two folds. Significantly different from good students, STAR barely have regular and clear study routines. We devised a multi-scale bag-of-regularity method to extract the regularity of learning behaviors that is robust to sparse data. Second, friends of STAR are more likely to be at risk. We constructed a co-occurrence network to approximate the underlying social network and encode the social homophily as features through network embedding. To validate the proposed algorithm, extensive experiments have been conducted among an Asian university with 15,503 undergraduate students. The results indicate EPARS outperforms baselines by 14.62% ~ 38.22% in predicting STAR.

قيم البحث

اقرأ أيضاً

In this work we analyze traces of mobility and co-location among a group of nearly 1000 closely interacting individuals. We attempt to reconstruct the Facebook friendship graph, Facebook interaction network, as well as call and SMS networks from long itudinal records of person-to-person offline proximity. We find subtle, yet observable behavioral differences between pairs of people who communicate using each of the different channels and we show that the signal of friendship is strong enough to stand out from the noise of random and schedule-driven offline interactions between familiar strangers. Our study also provides an overview of methods for link inference based on offline behavior and proposes new features to improve the performance of the prediction task.
The use of machine learning to guide clinical decision making has the potential to worsen existing health disparities. Several recent works frame the problem as that of algorithmic fairness, a framework that has attracted considerable attention and c riticism. However, the appropriateness of this framework is unclear due to both ethical as well as technical considerations, the latter of which include trade-offs between measures of fairness and model performance that are not well-understood for predictive models of clinical outcomes. To inform the ongoing debate, we conduct an empirical study to characterize the impact of penalizing group fairness violations on an array of measures of model performance and group fairness. We repeat the analyses across multiple observational healthcare databases, clinical outcomes, and sensitive attributes. We find that procedures that penalize differences between the distributions of predictions across groups induce nearly-universal degradation of multiple performance metrics within groups. On examining the secondary impact of these procedures, we observe heterogeneity of the effect of these procedures on measures of fairness in calibration and ranking across experimental conditions. Beyond the reported trade-offs, we emphasize that analyses of algorithmic fairness in healthcare lack the contextual grounding and causal awareness necessary to reason about the mechanisms that lead to health disparities, as well as about the potential of algorithmic fairness methods to counteract those mechanisms. In light of these limitations, we encourage researchers building predictive models for clinical use to step outside the algorithmic fairness frame and engage critically with the broader sociotechnical context surrounding the use of machine learning in healthcare.
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account emph{risk}, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective o f this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile risk-constrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
Parler is as an alternative social network promoting itself as a service that allows to speak freely and express yourself openly, without fear of being deplatformed for your views. Because of this promise, the platform become popular among users who were suspended on mainstream social networks for violating their terms of service, as well as those fearing censorship. In particular, the service was endorsed by several conservative public figures, encouraging people to migrate from traditional social networks. After the storming of the US Capitol on January 6, 2021, Parler has been progressively deplatformed, as its app was removed from Apple/Google Play stores and the website taken down by the hosting provider. This paper presents a dataset of 183M Parler posts made by 4M users between August 2018 and January 2021, as well as metadata from 13.25M user profiles. We also present a basic characterization of the dataset, which shows that the platform has witnessed large influxes of new users after being endorsed by popular figures, as well as a reaction to the 2020 US Presidential Election. We also show that discussion on the platform is dominated by conservative topics, President Trump, as well as conspiracy theories like QAnon.
Citizens assemblies need to represent subpopulations according to their proportions in the general population. These large committees are often constructed in an online fashion by contacting people, asking for the demographic features of the voluntee rs, and deciding to include them or not. This raises a trade-off between the number of people contacted (and the incurring cost) and the representativeness of the committee. We study three methods, theoretically and experimentally: a greedy algorithm that includes volunteers as long as proportionality is not violated; a non-adaptive method that includes a volunteer with a probability depending only on their features, assuming that the joint feature distribution in the volunteer pool is known; and a reinforcement learning based approach when this distribution is not known a priori but learnt online.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا