ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum computation of silicon electronic band structure

78   0   0.0 ( 0 )
 نشر من قبل Jagoda Slawinska
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Development of quantum architectures during the last decade has inspired hybrid classical-quantum algorithms in physics and quantum chemistry that promise simulations of fermionic systems beyond the capability of modern classical computers, even before the era of quantum computing fully arrives. Strong research efforts have been recently made to obtain minimal depth quantum circuits which could accurately represent chemical systems. Here, we show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids. In particular, we present minimal depth circuits implementing the variational quantum eigensolver algorithm and successfully use it to compute the band structure of silicon on a quantum machine for the first time. We are convinced that the presented quantum experiments performed on cloud-based platforms will stimulate more intense studies towards scalable electronic structure computation of advanced quantum materials.

قيم البحث

اقرأ أيضاً

95 - Yi Fan , Jie Liu , Zhenyu Li 2021
Band structure is a cornerstone to understand electronic properties of materials. Accurate band structure calculations using a high-level quantum-chemistry theory can be computationally very expensive. It is promising to speed up such calculations wi th a quantum computer. In this study, we present a quantum algorithm for band structure calculation based on the equation-of-motion (EOM) theory. First, we introduce a new variational quantum eigensolver algorithm named ADAPT-C for ground-state quantum simulation of solids, where the wave function is built adaptively from a complete set of anti-Hermitian operators. Then, on top of the ADAPT-C ground state, quasiparticle energies and the band structure can be calculated using the EOM theory in a quantum-subspace-expansion (QSE) style, where the projected excitation operators guarantee that the killer condition is satisfied. As a proof of principle, such an EOM-ADAPT-C protocol is used to calculate the band structures of silicon and diamond using a quantum computer simulator.
Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the pr ohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.
We report comprehensive study of physical properties of the binary superconductor compound SnAs. The electronic band structure of SnAs was investigated using both angle-resolved photoemission spectroscopy (ARPES) in a wide binding energy range and de nsity functional theory (DFT) within generalized gradient approximation (GGA). The DFT/GGA calculations were done including spin-orbit coupling for both bulk and (111) slab crystal structures. Comparison of the DFT/GGA band dispersions with ARPES data shows that (111) slab much better describes ARPES data than just bulk bands. Superconducting properties of SnAs were studied experimentally by specific heat, magnetic susceptibility, magnetotransport measurements and Andreev reflection spectroscopy. Temperature dependences of the superconducting gap and of the specific heat were found to be well consistent with those expected for the single band BCS superconductors with an isotropic s-wave order parameter. Despite spin-orbit coupling is present in SnAs, our data shows no signatures of a potential unconventional superconductivity, and the characteristic BCS ratio $2Delta/T_c = 3.48 - 3.73$ is very close to the BCS value in the weak coupling limit.
Quantum simulations of electronic structure with transformed ab initio Hamiltonians that include some electron correlation effects a priori are demonstrated. The transcorrelated Hamiltonians used in this work are efficiently constructed classically, at polynomial cost, by an approximate similarity transformation with an explicitly correlated two-body unitary operator; they are Hermitian, include up to two-particle interactions, and are free of electron-electron singularities. To investigate whether the use of such transformed Hamiltonians can reduce resource requirements for general quantum solvers for the Schrodinger equation, we explore the accuracy and the computational cost of the quantum variational eigensolver, based on the unitary coupled cluster with singles and doubles (q-UCCSD). Our results demonstrate that transcorrelated Hamiltonians, paired with extremely compact bases, produce explicitly correlated energies comparable to those from much larger bases. The use of transcorrelated Hamiltonians reduces the number of CNOT gates by up to two orders of magnitude, and the number of qubits by a factor of three.
The downscaling of silicon-based structures and proto-devices has now reached the single atom scale, representing an important milestone for the development of a silicon-based quantum computer. One especially notable platform for atomic scale device fabrication is the so-called SiP delta-layer, consisting of an ultra dense and sharp layer of dopants within a semiconductor host. Whilst several alternatives exist, phosphorus dopants in silicon have drawn the most interest, and it is on this platform that many quantum proto-devices have been successfully demonstrated. Motivated by this, both calculations and experiments have been dedicated to understanding the electronic structure of the SiP delta-layer platform. In this work, we use high resolution angle-resolved photoemission spectroscopy (ARPES) to reveal the structure of the electronic states which exist because of the high dopant density of the SiP delta-layer. In contrast to published theoretical work, we resolve three distinct bands, the most occupied of which shows a large anisotropy and significant deviation from simple parabolic behaviour. We investigate the possible origins of this fine structure, and conclude that it is primarily a consequence of the dielectric constant being large (ca. double that of bulk Si). Incorporating this factor into tight binding calculations leads to a major revision of band structure; specifically, the existence of a third band, the separation of the bands, and the departure from purely parabolic behaviour. This new understanding of the bandstructure has important implications for quantum proto-devices which are built on the SiP delta-layer platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا