ﻻ يوجد ملخص باللغة العربية
Small metal clusters are of fundamental scientific interest and of tremendous significance in catalysis. These nanoscale clusters display diverse geometries and structural motifs depending on the cluster size; a knowledge of this size-dependent structural motifs and their dynamical evolution has been of longstanding interest. Classical MD typically employ predefined functional forms which limits their ability to capture such complex size-dependent structural and dynamical transformation. Neural Network (NN) based potentials represent flexible alternatives and in principle, well-trained NN potentials can provide high level of flexibility, transferability and accuracy on-par with the reference model used for training. A major challenge, however, is that NN models are interpolative and requires large quantities of training data to ensure that the model adequately samples the energy landscape both near and far-from-equilibrium. Here, we introduce an active learning (AL) scheme that trains a NN model on-the-fly with minimal amount of first-principles based training data. Our AL workflow is initiated with a sparse training dataset (1 to 5 data points) and is updated on-the-fly via a Nested Ensemble Monte Carlo scheme that iteratively queries the energy landscape in regions of failure and updates the training pool to improve the network performance. Using a representative system of gold clusters, we demonstrate that our AL workflow can train a NN with ~500 total reference calculations. Our NN predictions are within 30 meV/atom and 40 meV/AA of the reference DFT calculations. Moreover, our AL-NN model also adequately captures the various size-dependent structural and dynamical properties of gold clusters in excellent agreement with DFT calculations and available experiments.
We introduce a coarse-grained deep neural network model (CG-DNN) for liquid water that utilizes 50 rotational and translational invariant coordinates, and is trained exclusively against energies of ~30,000 bulk water configurations. Our CG-DNN potent
Abstract Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to ob
Prediction of material properties from first principles is often a computationally expensive task. Recently, artificial neural networks and other machine learning approaches have been successfully employed to obtain accurate models at a low computati
Structural, electronic, vibrational and dielectric properties of LaBGeO$_5$ with the stillwellite structure are determined based on textit{ab initio} density functional theory. The theoretically relaxed structure is found to agree well with the exist
We give a detailed presentation of the theory and numerical implementation of an expression for the adiabatic energy flux in extended systems, derived from density-functional theory. This expression can be used to estimate the heat conductivity from