ﻻ يوجد ملخص باللغة العربية
Inelastic neutron experiments on the classical triangular-lattice geometrically frustrated antiferromagnet h-YMnO$_3$ reveal diffuse, gapless magnetic excitations present both below and far above the ordering temperature, $T_N$. The correlation length of the excitations increases as the temperature approaches zero, bearing strong resemblance to critical scattering. We model the scattering as critical spin-spin correlations in a two-dimensional magnetic ground state, and we speculate that this may provide a general framework to understand features typically attributed to classical spin liquids.
Inelastic neutron scattering has been used to study the magneto-elastic excitations in the multiferroic manganite hexagonal YMnO$_3$. An avoided crossing is found between magnon and phonon modes close to the Brillouin zone boundary in the $(a,b)$-pla
We used inelastic neutron scattering to show that well below its N{e}el temperature, $T_{rm N}$, the two-dimensional (2D) XY nearly-triangular antiferromagnet YMnO$_{3}$ has a prominent {it central peak} associated with 2D antiferromagnetic fluctuati
We report on multiple fundamental qualitative improvements in the growth of improper ferroelectric hexagonal YMnO$_3$ (YMO) thin films and heterostructures by pulsed laser deposition (PLD). By a combination of pre-growth substrate annealing and low-e
We report a comprehensive inelastic neutron-scattering study of the frustrated pyrochlore antiferromagnet MgCr2O4 in its cooperative paramagnetic regime. Theoretical modeling yields a microscopic Heisenberg model with exchange interactions up to thir
Fractionalization is a ubiquitous phenomenon in topological states of matter. In this work, we study the collective behavior of fractionalized topological charges and their instabilities, through the $J_1$-$J_2$-$J_3$ Ising model on a kagome lattice,