ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial integration of improper ferroelectric h-YMnO$_3$ thin films in heterostructures

143   0   0.0 ( 0 )
 نشر من قبل Johanna Nordlander
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on multiple fundamental qualitative improvements in the growth of improper ferroelectric hexagonal YMnO$_3$ (YMO) thin films and heterostructures by pulsed laser deposition (PLD). By a combination of pre-growth substrate annealing and low-energy-fluence PLD, we obtain a two-dimensional growth mode of the YMO films on yttria-stabilized zirconia (YSZ) with ultralow roughness and devoid of misoriented nanocrystalline inclusions. By inserting a sacrificial manganite layer capped with conducting indium-tin oxide between the substrate and the final film, the latter is grown in a fully lattice-relaxed mode and, thus, without any misfit dislocations while maintaining the extraordinary flatness of the films grown directly on pre-annealed YSZ. This provides a template for the fabrication of heterostructures based on hexagonal manganites as promising class of multiferroics with improper room-temperature ferroelectricity and the implementation of these into technologically relevant epitaxial metal|ferroelectric-type multilayers.

قيم البحث

اقرأ أيضاً

Improper ferroelectrics are described by two order parameters: a primary one, driving a transition to long-range distortive, magnetic or otherwise non-electric order, and the electric polarization, which is induced by the primary order parameter as a secondary, complementary effect. Using low-temperature scanning probe microscopy, we show that improper ferroelectric domains in YMnO$_3$ can be locally switched by electric field poling. However, subsequent temperature changes restore the as-grown domain structure as determined by the primary lattice distortion. The backswitching is explained by uncompensated bound charges occuring at the newly written domain walls due to the lack of mobile screening charges at low temperature. Thus, the polarization of improper ferroelectrics is in many ways subject to the same electrostatics as in their proper counterparts, yet complemented by additional functionalities arising from the primary order parameter. Tailoring the complex interplay between primary order parameter, polarization, and electrostatics is therefore likely to result in novel functionalities specific to improper ferroelectrics.
92 - Daesu Lee , A. Yoon , S. Y. Jang 2011
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o f magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2.
The metastable orthorhombic phase of hafnia is generally obtained in polycrystalline films, whereas in epitaxial films, its formation has been much less investigated. We have grown Hf0.5Zr0.5O2 films by pulsed laser deposition, and the growth window (temperature and oxygen pressure during deposition and film thickness) for epitaxial stabilization of the ferroelectric phase is mapped. The remnant ferroelectric polarization, up to around 24 uC/cm2, depends on the amount of orthorhombic phase and interplanar spacing and increases with temperature and pressure for a fixed film thickness. The leakage current decreases with an increase in thickness or temperature, or when decreasing oxygen pressure. The coercive electric field (EC) depends on thickness (t) according to the coercive electric field (Ec) - thickness (t)-2/3 scaling, which is observed for the first time in ferroelectric hafnia, and the scaling extends to thicknesses down to around 5 nm. The proven ability to tailor the functional properties of high-quality epitaxial ferroelectric Hf0.5Zr0.5O2 films paves the way toward understanding their ferroelectric properties and prototyping devices.
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented, cubic or pseudocubic setting, substrates with lattice parameter in the 3.71 - 4.21 A range. The lattice strain of the La0.67Sr0.33MnO3 electrode, determined by the lattice mismatch with the substrate, is critical in the stabilization of the orthorhombic phase of Hf0.5Zr0.5O2. On La0.67Sr0.33MnO3 electrodes tensile strained most of the Hf0.5Zr0.5O2 film is orthorhombic, whereas the monoclinic phase is favored when La0.67Sr0.33MnO3 is relaxed or compressively strained. Therefore, the Hf0.5Zr0.5O2 films on TbScO3 and GdScO3 substrates present substantially enhanced ferroelectric polarization in comparison to films on other substrates, including the commonly used SrTiO3. The capability of having epitaxial doped HfO2 films with controlled phase and polarization is of major interest for a better understanding of the ferroelectric properties and paves the way for fabrication of ferroelectric devices based on nanometric HfO2 films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا