ﻻ يوجد ملخص باللغة العربية
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. Utilizing the proposed similarity metric that accounts for both localization and categorization aspects of object detection allows our method to produce saliency maps that show image areas that most affect the prediction. D-RISE can be considered black-box in the software testing sense, as it only needs access to the inputs and outputs of an object detector. Compared to gradient-based methods, D-RISE is more general and agnostic to the particular type of object detector being tested, and does not need knowledge of the inner workings of the model. We show that D-RISE can be easily applied to different object detectors including one-stage detectors such as YOLOv3 and two-stage detectors such as Faster-RCNN. We present a detailed analysis of the generated visual explanations to highlight the utilization of context and possible biases learned by object detectors.
Existing rotated object detectors are mostly inherited from the horizontal detection paradigm, as the latter has evolved into a well-developed area. However, these detectors are difficult to perform prominently in high-precision detection due to the
Black box systems for automated decision making, often based on machine learning over (big) data, map a users features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possi
In this paper, we propose a novel effective non-rigid object tracking framework based on the spatial-temporal consistent saliency detection. In contrast to most existing trackers that utilize a bounding box to specify the tracked target, the proposed
Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the s
Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial perturbations of inputs including those modifying a small fraction of the input features named sparse or $L_0$ attacks. Effective and fast $L_0$ attacks, such as th