ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and photoinduced effects in elemental chalcogens: A review on Raman scattering

349   0   0.0 ( 0 )
 نشر من قبل Spyros Yannopoulos N.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Much progress has been made over a long period, spanning more than a century, in understanding the atomic arrangement on various length scales of noncrystalline chalcogens and their transitions upon certain external stimuli. However, it is broadly admitted that there are still several unsettled issues that call for proper rationalization. The current review presents an assessment of Raman scattering studies of noncrystalline phases of elemental chalcogens and their mixtures. First, a few remarks on the analysis of Raman data, related to polarization details and spectra reduction are presented. The effect of temperature, pressure and irradiation on the structure of chalcogens is reviewed in detail. As only selenium can form a stable glass at ambient conditions, the interest on sulfur and tellurium has been placed in the melt and the amorphous phase, respectively, whereas reference is also made to the sporadic structural studies of glassy sulfur at low temperatures. It is shown how Raman scattering can be exploited to explore unique phenomena emerging in the liquid state of sulfur, offering valuable information on the details of lambda transition including various thermodynamic related properties. The subtle nature of this transition in selenium is also discussed. Tellurium is not only impossible to be prepared in the bulk glassy state, but also forms a very liable to crystallization amorphous film. Therefore, the emphasis is placed on light induced nanostructuring and effects related to photo amorphization and photo oxidation.



قيم البحث

اقرأ أيضاً

76 - G.Simon , B. Hehlen , E. Courtens 2005
Hyper-Raman scattering spectra of vitreous B$_2$O$_3$ are reported and compared to Raman scattering results. The main features are indexed in terms of vibrations of structural units. Particular attention is given to the low frequency boson peak which is shown to relate to out-of-plane librations of B$_3$O$_3$ boroxol rings and BO$_3$ triangles. Its hyper-Raman strength is comparable to that of cooperative polar modes. It points to a sizeable coherent enhancement of the hyper-Raman signal compared to the Raman one. This is explained by the symmetry of the structural units.
289 - C. Timm , F. Schafer , 2001
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is thus not appropriate for (Ga,Mn)As containing 1-5% Mn. We also point out a microscopically unmotivated sign change in the overlap integrals in the Letter. Without this sign change, stable ferromagnetism is not obtained.
We report new inelastic Raman and neutron scattering spectra for glasses with different degrees of fragility; the data are compared for each sample to obtain the Raman coupling function $C(omega)$. The study indicates a general linear behaviour of th e $C(omega)$ near the Boson peak maximum, and evidence a correlation between vibrational and relaxational properties, already observed in recent publications.
We study a minimal model for a relaxor ferroelectric including dipolar interactions, and short-range harmonic and anharmonic forces for the critical modes as in the theory of pure ferroelectrics together with quenched disorder coupled linearly to the critical modes. We present the simplest approximate solution of the model necessary to obtain the principal features of the correlation functions. Specifically, we calculate and compare the structure factor measured by neutron scattering in different characteristic regimes of temperature in the relaxor PbMg$_{1/3}$Nb$_{2/3}$O$_3$.
The current critical review aims to be more than a simple summary and reproduction of previously published work. Many comprehensive reviews and collections can be found in the literature. The main intention is to provide an account of the progress ma de in selected aspects of photoinduced phenomena in non-crystalline chalcogenides, presenting the current understanding of the mechanisms underlying such effects. An essential motive for the present review article has been to assess critically published experimental work in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا