ﻻ يوجد ملخص باللغة العربية
A new transport code DaeJeon Boltzmann-Uehling-Uhlenbeck (DJBUU) had been developed and enables to describe the dynamics of heavy-ion collisions in low-energy region. To confirm the validity of the new code, we first calculate Au + Au collisions at Ebeam = 100 and 400A MeV and also perform the box calculation to check the detail of collisions and Pauli blocking without mean-field potential as suggested by the Transport Code Comparison Project. After confirming the validity of new transport code, we study low-energy heavy-ion collisions with an extended parity doublet model. Since the distinctive feature of the parity doublet model is the existence of the chiral invariant mass that contributes to the nucleon mass, we investigate how physical quantities depend on the chiral invariant mass in heavy ion collisions at low energies. For this, we calculate physical quantities such as the effective nucleon mass in central collisions and transverse flow in semi-central collisions of Au + Au at Ebeam = 400A MeV with different values of the chiral invariant masses.
Using an extended parity doublet model with the hidden local symmetry, we study the properties of nuclei in the mean field approximation to see if the parity doublet model could reproduce nuclear properties and also to estimate the value of the chira
We construct nuclear matter based on an extended parity doublet model including four light nucleons $N(939)$, $N(1440)$, $N(1535)$, and $N(1650)$. We exclude some values of the chiral invariant masses by requiring the saturation properties of normal
We investigate the properties of isospin-symmetric nuclear matter and neutron stars in a chiral model approach adopting the SU(2) parity doublet formulation. This ansatz explicitly incorporates chiral symmetry restoration with the limit of degenerate
We study dense nuclear matter and the chiral phase transition in a SU(2) parity doublet model at zero temperature. The model is defined by adding the chiral partner of the nucleon, the N, to the linear sigma model, treating the mass of the N as an un
We study the chiral condensates in neutron star matter from nuclear to quark matter domain. We describe nuclear matter with a parity doublet model (PDM), quark matter with the Nambu--Jona-Lasino (NJL) model, and a matter at the intermediate density b