ﻻ يوجد ملخص باللغة العربية
We construct nuclear matter based on an extended parity doublet model including four light nucleons $N(939)$, $N(1440)$, $N(1535)$, and $N(1650)$. We exclude some values of the chiral invariant masses by requiring the saturation properties of normal nuclear matter; saturation density, binding energy, incompressibility, and symmetry energy. We find further constraint to the chiral invariant masses from the tidal deformability determined by the observation of the gravitational waves from neutron star merger GW170817. Our result shows that the chiral invariant masses are larger than about $600,$MeV. We also give some predictions on the symmetry energy and the slope parameters in the high density region, which will be measured in future experiments.
We study the chiral condensates in neutron star matter from nuclear to quark matter domain. We describe nuclear matter with a parity doublet model (PDM), quark matter with the Nambu--Jona-Lasino (NJL) model, and a matter at the intermediate density b
A new transport code DaeJeon Boltzmann-Uehling-Uhlenbeck (DJBUU) had been developed and enables to describe the dynamics of heavy-ion collisions in low-energy region. To confirm the validity of the new code, we first calculate Au + Au collisions at E
We construct an equation of state (EOS) for neutron stars by interpolating hadronic EOS at low density and quark EOS at high density. A hadronic model based on the parity doublet structure is used for hadronic matter and a quark model of Nambu--Jona-
Using an extended parity doublet model with the hidden local symmetry, we study the properties of nuclei in the mean field approximation to see if the parity doublet model could reproduce nuclear properties and also to estimate the value of the chira
We investigate the properties of isospin-symmetric nuclear matter and neutron stars in a chiral model approach adopting the SU(2) parity doublet formulation. This ansatz explicitly incorporates chiral symmetry restoration with the limit of degenerate