ﻻ يوجد ملخص باللغة العربية
First order coherence measurements of a polariton condensate, reveal a regime where the condensate pseudo-spin precesses persistently within the driving optical pulse. Within a single 20 $mu$s optical pulse the condensate pseudo-spin performs over $10^5$ precessions with striking frequency stability. The condensate maintains its phase coherence even after a complete precession of the spin vector, making the observed state by a definition a spin coherent state. The emergence of the precession is traced to the polariton interactions that give rise to a self-induced out-of-plane magnetic field that in turn drives the spin dynamics. We find that the Larmor oscillation frequency scales with the condensate density, enabling external tuning of this effect by optical means. The stability of the system allows for the realization of integrated optical magnetometry devices with the use of materials with enhanced exciton $g$-factor and can facilitate spin squeezing effects and active coherent control on the Bloch sphere in polariton condensates.
Bose-Einstein condensates of exciton-polaritons are known for their fascinating coherent and polarization properties. The spin state of the condensate is reflected in polarization of the exciton-polariton emission, with temporal fluctuations of this
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splitting of spinor polariton states and spin dependent polariton-polariton interactions. We present the novel class of solutions
We generalize the spin Meissner effect for exciton-polariton condensate confined in annular geometries to the case of non-trivial topology of the condensate wavefunction. In contrast to the conventional spin Meissner state, topological spin Meissner
Several mechanisms are discussed which could determine the spatial coherence of a polariton condensate confined to a one dimensional wire. The mechanisms considered are polariton-polariton interactions, disorder scattering and non-equilibrium occupat
We observe a spontaneous parity breaking bifurcation to a ferromagnetic state in a spatially trapped exciton-polariton condensate. At a critical bifurcation density under nonresonant excitation, the whole condensate spontaneously magnetizes and rando