ترغب بنشر مسار تعليمي؟ اضغط هنا

Compressive Subspace Learning with Antenna Cross-correlations for Wideband Spectrum Sensing

74   0   0.0 ( 0 )
 نشر من قبل Tierui Gong
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Compressive subspace learning (CSL) with the exploitation of space diversity has found a potential performance improvement for wideband spectrum sensing (WBSS). However, previous works mainly focus on either exploiting antenna auto-correlations or adopting a multiple-input multiple-output (MIMO) channel without considering the spatial correlations, which will degrade their performances. In this paper, we consider a spatially correlated MIMO channel and propose two CSL algorithms (i.e., mCSLSACC and vCSLACC) which exploit antenna cross-correlations, where the mCSLSACC utilizes an antenna averaging temporal decomposition, and the vCSLACC uses a spatial-temporal joint decomposition. For both algorithms, the conditions of statistical covariance matrices (SCMs) without noise corruption are derived. Through establishing the singular value relation of SCMs in statistical sense between the proposed and traditional CSL algorithms, we show the superiority of the proposed CSL algorithms. By further depicting the receiving correlation matrix of MIMO channel with the exponential correlation model, we give important closed-form expressions for the proposed CSL algorithms in terms of the amplification of singular values over traditional CSL algorithms. Such expressions provide a possibility to determine optimal algorithm parameters for high system performances in an analytical way. Simulations validate the correctness of this work and its performance improvement over existing works in terms of WBSS performance.



قيم البحث

اقرأ أيضاً

Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks.
Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. Since individual cognitive radios might not be able to reliably detect weak primary signals due to channel fading/shadowing, this paper proposes a cooperative wideband spectrum sensing scheme, referred to as spatial-spectral joint detection, which is based on a linear combination of the local statistics from spatially distributed multiple cognitive radios. The cooperative sensing problem is formulated into an optimization problem, for which suboptimal but efficient solutions can be obtained through mathematical transformation under practical conditions.
Distributed Compressive Sensing (DCS) improves the signal recovery performance of multi signal ensembles by exploiting both intra- and inter-signal correlation and sparsity structure. However, the existing DCS was proposed for a very limited ensemble of signals that has single common information cite{Baron:2009vd}. In this paper, we propose a generalized DCS (GDCS) which can improve sparse signal detection performance given arbitrary types of common information which are classified into not just full common information but also a variety of partial common information. The theoretical bound on the required number of measurements using the GDCS is obtained. Unfortunately, the GDCS may require much a priori-knowledge on various inter common information of ensemble of signals to enhance the performance over the existing DCS. To deal with this problem, we propose a novel algorithm that can search for the correlation structure among the signals, with which the proposed GDCS improves detection performance even without a priori-knowledge on correlation structure for the case of arbitrarily correlated multi signal ensembles.
Compressive sensing has shown significant promise in biomedical fields. It reconstructs a signal from sub-Nyquist random linear measurements. Classical methods only exploit the sparsity in one domain. A lot of biomedical signals have additional struc tures, such as multi-sparsity in different domains, piecewise smoothness, low rank, etc. We propose a framework to exploit all the available structure information. A new convex programming problem is generated with multiple convex structure-inducing constraints and the linear measurement fitting constraint. With additional a priori information for solving the underdetermined system, the signal recovery performance can be improved. In numerical experiments, we compare the proposed method with classical methods. Both simulated data and real-life biomedical data are used. Results show that the newly proposed method achieves better reconstruction accuracy performance in term of both L1 and L2 errors.
A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be invoked as an explicit benefit of having a sparse transform-domain representation. For example, wide-band next-generation systems require a high Nyquist-sampling rate, but the channel impulse response (CIR) will be very sparse at the high Nyquist frequency, given the low number of reflected propagation paths. This motivates the employment of compressive sensing based processing techniques for frugally exploiting both the limited radio resources and the network infrastructure as efficiently as possible. A diverse range of sophisticated compressed sampling techniques is surveyed and we conclude with a variety of promising research ideas related to large-scale antenna arrays, non-orthogonal multiple access (NOMA), and ultra-dense network (UDN) solutions, just to name a few.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا