ﻻ يوجد ملخص باللغة العربية
The energy deposition and the atomic processes, such as the electron-capture, ionization, excitation and radiative-decays for slow heavy ions in plasma remains an unsolved fundamental problem. Here we investigate, both experimentally and theoretically, the stopping of 100 keV=u helium ions in a well-defined hydrogen plasma. Our precise measurements show a much higher energy loss than the predictions of the semi-classical approaches with the commonly used effective charge. By solving the Time Dependent Rate Equation (TDRE) with all the main projectile states and for all relevant atomic processes, our calculations are in remarkable agreement with the experimental data. We also demonstrated that, acting as a bridge for electron-capture and ionization, the projectile excited states and their radiative decays can remarkably influence the equilibrium charge states and consequently lead to a substantial increasing of the stopping of ions in plasma.
Electronic stopping cross sections (SCS) of nickel, silicon and nickel-silicon alloys for protons and helium (He) ions are studied in the regime of medium and low energy ion scattering, i.e., for ion energies in the range from 500 eV to 200 keV. For
The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to fo
We reinvestigate a claimed sample of 22 X-ray detected active galactic nuclei (AGN) at redshifts z > 4, which has reignited the debate as to whether young galaxies or AGN reionized the Universe. These sources lie within the GOODS-S/CANDELS field, and
We describe a numerical method that simulates the interaction of the helium atom with sequences of femtosecond and attosecond light pulses. The method, which is based on the close-coupling expansion of the electronic configuration space in a B-spline
We study deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles. To solve this problem, we employ the Navier--Stokes equation for a compressible fluid with due regard for friction between