ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic interaction of slow hydrogen and helium ions in the nickel-silicon system

150   0   0.0 ( 0 )
 نشر من قبل Tuan Tran
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electronic stopping cross sections (SCS) of nickel, silicon and nickel-silicon alloys for protons and helium (He) ions are studied in the regime of medium and low energy ion scattering, i.e., for ion energies in the range from 500 eV to 200 keV. For protons, at velocities below the Bohr velocity the deduced SCS is proportional to the ion velocity for all investigated materials. In contrast, for He ions non-linear velocity scaling is observed in all investigated materials. Static calculations using density functional theory (DFT) available from literature accurately predict the SCS of Ni and Ni-Si alloy in the regime with observed velocity proportionality. At higher energies, the energy dependence of the deduced SCS of Ni for protons and He ions agrees with the prediction by recent time dependent DFT calculations. The measured SCS of the Ni-Si alloy was compared to the SCS obtained from Braggs rule based on SCS for Ni and Si deduced in this study, yielding good agreement for protons, but systematic deviations for He projectiles, by almost 20%. Overall, the obtained data indicate the importance of non adiabatic processes such as charge exchange for proper modelling of electronic stopping of in particular medium energy ions heavier than protons in solids.



قيم البحث

اقرأ أيضاً

273 - Y.T. Zhao , Y.N. Zhang , R. Cheng 2020
The energy deposition and the atomic processes, such as the electron-capture, ionization, excitation and radiative-decays for slow heavy ions in plasma remains an unsolved fundamental problem. Here we investigate, both experimentally and theoreticall y, the stopping of 100 keV=u helium ions in a well-defined hydrogen plasma. Our precise measurements show a much higher energy loss than the predictions of the semi-classical approaches with the commonly used effective charge. By solving the Time Dependent Rate Equation (TDRE) with all the main projectile states and for all relevant atomic processes, our calculations are in remarkable agreement with the experimental data. We also demonstrated that, acting as a bridge for electron-capture and ionization, the projectile excited states and their radiative decays can remarkably influence the equilibrium charge states and consequently lead to a substantial increasing of the stopping of ions in plasma.
Energies and Auger widths of the $LL$ resonances in He-like ions from boron to argon are evaluated by means of a complex scaled configuration-interaction approach within the framework of the Dirac-Coulomb-Breit Hamiltonian. The nuclear recoil and QED corrections are also taken into account. The obtained results are compared with other calculations based on the complex scaling method as well as with the related results evaluated using the stabilization and basis balancing methods.
Expectation values of the Breit operators and the $Q$ terms are calculated for HD$^+$ with the vibrational number $v=0-4$ and the total angular momentum $L=0-4$. Relativistic and radiative corrections to some ro-vibrational transition frequencies are determined. Numerical uncertainty in $R_{infty}alpha^2$ order correction is reduced to sub kHz or smaller. Our work provides an independent verification of Korobovs calculations [Phys. Rev. A {bf74}, 052506 (2006); {bf77}, 022509 (2008)].
The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several $mathrm{2Srightarrow2P}$ transition frequencies in the mu onic helium-3 ion, $mathrm{mu^3He^+}$. This ion is the bound state of a single negative muon $mu^-$ and a bare helium-3 nucleus (helion), $mathrm{^3He^{++}}$. A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in $mathrm{mu^3He^+}$. With this review we continue our series of theory summaries in light muonic atoms; see Antognini et al., Ann. Phys. 331, 127 (2013), Krauth et al., Ann.Phys. 366, 168 (2016), and Diepold et al., ArXiv 1606.05231 (2016).
Highly charged ions (HCIs) are promising candidates for the next generation of atomic clocks, owing to their tightly bound electron cloud, which significantly suppresses the common environmental disturbances to the quantum oscillator. Here we propose and pursue an experimental strategy that, while focusing on various HCIs of a single atomic element, keeps the number of candidate clock transitions as large as possible. Following this strategy, we identify four adjacent charge states of nickel HCIs that offer as many as six optical transitions. Experimentally, we demonstrated the essential capability of producing these ions in the low-energy compact Shanghai-Wuhan Electron Beam Ion Trap. We measured the wavelengths of four magnetic-dipole ($M$1) and one electric-quadrupole ($E$2) clock transitions with an accuracy of several ppm with a novel calibration method; two of these lines were observed and characterized for the first time in controlled laboratory settings. Compared to the earlier determinations, our measurements improved wavelength accuracy by an order of magnitude. Such measurements are crucial for constraining the range of laser wavelengths for finding the needle in a haystack narrow lines. In addition, we calculated frequencies and quality factors, evaluated sensitivity of these six transitions to the hypothetical variation of the electromagnetic fine structure constant $alpha$ needed for fundamental physics applications. We argue that all the six transitions in nickel HCIs offer intrinsic immunity to all common perturbations of quantum oscillators, and one of them has the projected fractional frequency uncertainty down to the remarkable level of 10$^{-19}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا