ترغب بنشر مسار تعليمي؟ اضغط هنا

Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?

54   0   0.0 ( 0 )
 نشر من قبل Molly Gallagher
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use ALMA and IRAM 30-m telescope data to investigate the relationship between the spectroscopically-traced dense gas fraction and the cloud-scale (120 pc) molecular gas surface density in five nearby, star-forming galaxies. We estimate the dense gas mass fraction at 650 pc and 2800 pc scales using the ratio of HCN (1-0) to CO (1-0) emission. We then use high resolution (120 pc) CO (2-1) maps to calculate the mass-weighted average molecular gas surface density within 650 pc or 2770 pc beam where the dense gas fraction is estimated. On average, the dense gas fraction correlates with the mass-weighted average molecular gas surface density. Thus, parts of a galaxy with higher mean cloud-scale gas surface density also appear to have a larger fraction of dense gas. The normalization and slope of the correlation do vary from galaxy to galaxy and with the size of the regions studied. This correlation is consistent with a scenario where the large-scale environment sets the gas volume density distribution, and this distribution manifests in both the cloud-scale surface density and the dense gas mass fraction.


قيم البحث

اقرأ أيضاً

Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and t heir substructure from scales $sim~$1~kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation.
We present the results of a large-scale survey of the very dense gas in the Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas found in pre- and protostellar cor es, as well as in outflows. We compare the HCO+/HCN data, highlighting regions where there is a marked discrepancy in the spectra of the two emission lines. We use the HCO+ to identify positively protostellar outflows and their driving sources, and present a statistical analysis of the outflow properties that we derive from this tracer. We find that the relations we calculate between the HCO+ outflow driving force and the Menv and Lbol of the driving source are comparable to those obtained from similar outflow analyses using 12CO, indicating that the two molecules give reliable estimates of outflow properties. We also compare the HCO+ and the HCN in the outflows, and find that the HCN traces only the most energetic outflows, the majority of which are driven by young Class 0 sources. We analyse the abundances of HCN and HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is much more enhanced than the HCO+ in the outflow lobes. We suggest that this is indicative of shock-enhancement of HCN along the length of the outflow; this process is not so evident for HCO+, which is largely confined to the outflow base.
The non-uniform distribution of gas and protostars in molecular clouds is caused by combinations of various physical processes that are difficult to separate. We explore this non-uniform distribution in the M17 molecular cloud complex that hosts mass ive star formation activity using the $^{12}$CO ($J=1-0$) and $^{13}$CO ($J=1-0$) emission lines obtained with the Nobeyama 45m telescope. Differences in clump properties such as mass, size, and gravitational boundedness reflect the different evolutionary stages of the M17-H{scriptsize II} and M17-IRDC clouds. Clumps in the M17-H{scriptsize II} cloud are denser, more compact, and more gravitationally bound than those in M17-IRDC. While M17-H{scriptsize II} hosts a large fraction of very dense gas (27%) that has column density larger than the threshold of $sim$ 1 g cm$^{-2}$ theoretically predicted for massive star formation, this very dense gas is deficient in M17-IRDC (0.46%). Our HCO$^+$ ($J=1-0$) and HCN ($J=1-0$) observations with the TRAO 14m telescope, { lqb trace all gas with column density higher than $3times 10^{22}$ cm$^{-2}$}, confirm the deficiency of high density ($gtrsim 10^5$ cm$^{-3}$) gas in M17-IRDC. Although M17-IRDC is massive enough to potentially form massive stars, its deficiency of very dense gas and gravitationally bound clumps can explain the current lack of massive star formation.
We present the results of on-the-fly mapping observations of 44 fields containing 107 SCUBA-2 cores in the emission lines of molecules, N$_2$H$^+$, HC$_3$N, and CCS at 82$-$94 GHz using the Nobeyama 45-m telescope. This study aimed at investigating t he physical properties of cores that show high deuterium fractions and might be close to the onset of star formation. We found that the distributions of the N$_2$H$^+$ and HC$_3$N line emissions are approximately similar to that of 850-$mu$m dust continuum emission, whereas the CCS line emission is often undetected or is distributed in a clumpy structure surrounding the peak position of the 850-$mu$m dust continuum emission. Occasionally (12%), we observe the CCS emission which is an early-type gas tracer toward the young stellar object, probably due to local high excitation. Evolution toward star formation does not immediately affect nonthermal velocity dispersion.
91 - Jens Kauffmann 2016
We present the first systematic study of the density structure of clouds found in a complete sample covering all major molecular clouds in the Central Molecular Zone (CMZ; inner $sim{}200~rm{}pc$) of the Milky Way. This is made possible by using data from the Galactic Center Molecular Cloud Survey (GCMS), the first study resolving all major molecular clouds in the CMZ at interferometer angular resolution. We find that many CMZ molecular clouds have unusually shallow density gradients compared to regions elsewhere in the Milky Way. This is possibly a consequence of weak gravitational binding of the clouds. The resulting relative absence of dense gas on spatial scales $sim{}0.1~rm{}pc$ is probably one of the reasons why star formation (SF) in dense gas of the CMZ is suppressed by a factor $sim{}10$, compared to solar neighborhood clouds. Another factor suppressing star formation are the high SF density thresholds that likely result from the observed gas kinematics. Further, it is possible but not certain that the star formation activity and the cloud density structure evolve systematically as clouds orbit the CMZ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا