ﻻ يوجد ملخص باللغة العربية
This paper presents some novel contributions to the theory of inviscid flow regarding the forces exerted on a body moving through such a fluid in two dimensions. It is argued that acceleration of the body corresponds to vorticity generation that is independent of the instantaneous velocity of the body and thus the boundary condition on the normal velocity. The strength of the vortex sheet representing the body retains a degree of freedom that represents the net effect of the tangential boundary condition associated with the viscous flow governed by the higher-order Navier-Stokes equations. This degree of freedom is the circulation of the vorticity generated by the acceleration of the body. Equivalently, it is the net circulation around a contour enclosing the body and any shed vorticity. In accordance with Kelvins circulation theorem, a non-zero value of the circulation around this system is necessarily communicated to infinity. This contrasts with the usual acceptance of the theorem as requiring this circulation to be zero at all times; a condition that is incapable of capturing the effect of newly generated vorticity on the body surface when it accelerates. Additionally, the usual boundary condition of continuity of normal velocity is relaxed to allow for fluid entrainment into surfaces of discontinuity that represent the mass contained within the viscous layers of the physical problem. The generalized force calculation is presented in detail. The importance of the vorticity generation due to body acceleration is demonstrated on some modeled problems relevant to biological propulsion.
Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid, incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of i
Series of experiments on turbulent bubbly channel flows observed bubble clusters near the wall which can change large-scale flow structures. To gain insights into clustering mechanisms, we study the interaction of a pair of spherical bubbles rising i
The formation of singularities on a free surface of a conducting ideal fluid in a strong electric field is considered. It is found that the nonlinear equations of two-dimensional fluid motion can be solved in the small-angle approximation. This enabl
We consider the unsteady thin-film dynamics of a long bubble of negligible viscosity that advances at a uniform speed in a cylindrical capillary tube. The bubble displaces a viscous, nonwetting fluid, creating a thin film between its interface and th
It is well known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms of propulsion and feeding. Therefore it is important to estimate the effect