ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher-Order Topological Instanton Tunneling Oscillation

73   0   0.0 ( 0 )
 نشر من قبل Moon jip Park
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new type of instanton interference effect in two-dimensional higher-order topological insulators. The intercorner tunneling consists of the instanton and the anti-instanton pairs that travel through the boundary of the higher-order topological insulator. The Berry phase difference between the instanton pairs causes the interference of the tunneling. This topological effect leads to the gate-tunable oscillation of the energy splitting between the corner states, where the oscillatory nodes signal the perfect suppression of the tunneling. We suggest this phenomenon as a unique feature of the topological corner states that differentiate from trivial bound states. In the view of experimental realization, we exemplify twisted bilayer graphene, as a promising candidate of a two-dimensional higher-order topological insulator. The oscillation can be readily observed through the transport experiment that we propose. Thus, our work provides a feasible route to identify higher-order topological materials.



قيم البحث

اقرأ أيضاً

Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to pological insulators to systems that host no gapless surface states, but exhibit topologically protected gapless hinge states. Their topological character is protected by spatio-temporal symmetries, of which we present two cases: (1) Chiral higher-order topological insulators protected by the combination of time-reversal and a four-fold rotation symmetry. Their hinge states are chiral modes and the bulk topology is $mathbb{Z}_2$-classified. (2) Helical higher-order topological insulators protected by time-reversal and mirror symmetries. Their hinge states come in Kramers pairs and the bulk topology is $mathbb{Z}$-classified. We provide the topological invariants for both cases. Furthermore we show that SnTe as well as surface-modified Bi$_2$TeI, BiSe, and BiTe are helical higher-order topological insulators and propose a realistic experimental setup to detect the hinge states.
We introduce higher-order topological Dirac superconductor (HOTDSC) as a new gapless topological phase of matter in three dimensions, which extends the notion of Dirac phase to a higher-order topological version. Topologically distinct from the tradi tional topological superconductors and known Dirac superconductors, a HOTDSC features helical Majorana hinge modes between adjacent surfaces, which are direct consequences of the symmetry-protected higher-order band topology manifesting in the system. Specifically, we show that rotational, spatial inversion, and time-reversal symmetries together protect the coexistence of bulk Dirac nodes and hinge Majorana modes in a seamless way. We define a set of topological indices that fully characterizes the HOTDSC. We further show that a practical way to realize the HOTDSC phase is to introduce unconventional odd-parity pairing to a three-dimensional Dirac semimetal while preserving the necessary symmetries. As a concrete demonstration of our idea, we construct a corresponding minimal lattice model for HOTDSC obeying the symmetry constraints. Our model exhibits the expected topological invariants in the bulk and the defining spectroscopic features on an open geometry, as we explicitly verify both analytically and numerically. Remarkably, the HOTDSC phase offers an example of a higher-order topological quantum critical point, which enables realizations of various higher-order topological phases under different symmetry-breaking patterns. In particular, by breaking the inversion symmetry of a HOTDSC, we arrive at a higher-order Weyl superconductor, which is yet another new gapless topological state that exhibits hybrid higher-order topology.
104 - Yan-Bin Yang , Kai Li , L.-M. Duan 2020
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei r topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
The discovery of the quantization of particle transport in adiabatic pumping cycles of periodic structures by Thouless [Thouless D. J., Phys. Rev. B 27, 6083 (1983)] linked the Chern number, a topological invariant characterizing the quantum Hall eff ect in two-dimensional electron gases, with the topology of dynamical periodic systems in one dimension. Here, we demonstrate its counterpart for higher-order topology. Specifically, we show that adiabatic cycles in two-dimensional crystals with vanishing dipole moments (and therefore zero `particle transport) can nevertheless be topologically nontrivial. These cycles are associated with higher-order topology and can be diagnosed by their ability to produce corner-to-corner transport in certain metamaterial platforms. We experimentally verify this transport by using an array of photonic waveguides modulated in their separations and refractive indices. By mapping the dynamical phenomenon demonstrated here from two spatial and one temporal to three spatial dimensions, this transport is equivalent to the observation of the chiral nature of the gapless hinge states in a three-dimensional second-order topological insulator.
Robust boundary states epitomize how deep physics can give rise to concrete experimental signatures with technological promise. Of late, much attention has focused on two distinct mechanisms for boundary robustness - topological protection, as well a s the non-Hermitian skin effect. In this work, we report the first experimental realizations of hybrid higher-order skin-topological effect, in which the skin effect selectively acts only on the topological boundary modes, not the bulk modes. Our experiments, which are performed on specially designed non-reciprocal 2D and 3D topolectrical circuit lattices, showcases how non-reciprocal pumping and topological localization dynamically interplays to form various novel states like 2D skin-topological, 3D skin-topological-topological hybrid states, as well as 2D and 3D higher-order non-Hermitian skin states. Realized through our highly versatile and scalable circuit platform, theses states have no Hermitian nor lower-dimensional analog, and pave the way for new applications in topological switching and sensing through the simultaneous non-trivial interplay of skin and topological boundary localizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا