ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadamard Wirtinger Flow for Sparse Phase Retrieval

150   0   0.0 ( 0 )
 نشر من قبل Fan Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of reconstructing an $n$-dimensional $k$-sparse signal from a set of noiseless magnitude-only measurements. Formulating the problem as an unregularized empirical risk minimization task, we study the sample complexity performance of gradient descent with Hadamard parametrization, which we call Hadamard Wirtinger flow (HWF). Provided knowledge of the signal sparsity $k$, we prove that a single step of HWF is able to recover the support from $k(x^*_{max})^{-2}$ (modulo logarithmic term) samples, where $x^*_{max}$ is the largest component of the signal in magnitude. This support recovery procedure can be used to initialize existing reconstruction methods and yields algorithms with total runtime proportional to the cost of reading the data and improved sample complexity, which is linear in $k$ when the signal contains at least one large component. We numerically investigate the performance of HWF at convergence and show that, while not requiring any explicit form of regularization nor knowledge of $k$, HWF adapts to the signal sparsity and reconstructs sparse signals with fewer measurements than existing gradient based methods.

قيم البحث

اقرأ أيضاً

We analyze continuous-time mirror descent applied to sparse phase retrieval, which is the problem of recovering sparse signals from a set of magnitude-only measurements. We apply mirror descent to the unconstrained empirical risk minimization problem (batch setting), using the square loss and square measurements. We provide a convergence analysis of the algorithm in this non-convex setting and prove that, with the hypentropy mirror map, mirror descent recovers any $k$-sparse vector $mathbf{x}^starinmathbb{R}^n$ with minimum (in modulus) non-zero entry on the order of $| mathbf{x}^star |_2/sqrt{k}$ from $k^2$ Gaussian measurements, modulo logarithmic terms. This yields a simple algorithm which, unlike most existing approaches to sparse phase retrieval, adapts to the sparsity level, without including thresholding steps or adding regularization terms. Our results also provide a principled theoretical understanding for Hadamard Wirtinger flow [58], as Euclidean gradient descent applied to the empirical risk problem with Hadamard parametrization can be recovered as a first-order approximation to mirror descent in discrete time.
We investigate implicit regularization schemes for gradient descent methods applied to unpenalized least squares regression to solve the problem of reconstructing a sparse signal from an underdetermined system of linear measurements under the restric ted isometry assumption. For a given parametrization yielding a non-convex optimization problem, we show that prescribed choices of initialization, step size and stopping time yield a statistically and computationally optimal algorithm that achieves the minimax rate with the same cost required to read the data up to poly-logarithmic factors. Beyond minimax optimality, we show that our algorithm adapts to instance difficulty and yields a dimension-independent rate when the signal-to-noise ratio is high enough. Key to the computational efficiency of our method is an increasing step size scheme that adapts to refined estimates of the true solution. We validate our findings with numerical experiments and compare our algorithm against explicit $ell_{1}$ penalization. Going from hard instances to easy ones, our algorithm is seen to undergo a phase transition, eventually matching least squares with an oracle knowledge of the true support.
87 - Tor Lattimore , Botao Hao 2021
We study a bandit version of phase retrieval where the learner chooses actions $(A_t)_{t=1}^n$ in the $d$-dimensional unit ball and the expected reward is $langle A_t, theta_starrangle^2$ where $theta_star in mathbb R^d$ is an unknown parameter vecto r. We prove that the minimax cumulative regret in this problem is $smash{tilde Theta(d sqrt{n})}$, which improves on the best known bounds by a factor of $smash{sqrt{d}}$. We also show that the minimax simple regret is $smash{tilde Theta(d / sqrt{n})}$ and that this is only achievable by an adaptive algorithm. Our analysis shows that an apparently convincing heuristic for guessing lower bounds can be misleading and that uniform bounds on the information ratio for information-directed sampling are not sufficient for optimal regret.
Existing nonconvex statistical optimization theory and methods crucially rely on the correct specification of the underlying true statistical models. To address this issue, we take a first step towards taming model misspecification by studying the hi gh-dimensional sparse phase retrieval problem with misspecified link functions. In particular, we propose a simple variant of the thresholded Wirtinger flow algorithm that, given a proper initialization, linearly converges to an estimator with optimal statistical accuracy for a broad family of unknown link functions. We further provide extensive numerical experiments to support our theoretical findings.
Classical signal recovery based on $ell_1$ minimization solves the least squares problem with all available measurements via sparsity-promoting regularization. In practice, it is often the case that not all measurements are available or required for recovery. Measurements might be corrupted/missing or they arrive sequentially in streaming fashion. In this paper, we propose a global sparse recovery strategy based on subsets of measurements, named JOBS, in which multiple measurements vectors are generated from the original pool of measurements via bootstrapping, and then a joint-sparse constraint is enforced to ensure support consistency among multiple predictors. The final estimate is obtained by averaging over the $K$ predictors. The performance limits associated with different choices of number of bootstrap samples $L$ and number of estimates $K$ is analyzed theoretically. Simulation results validate some of the theoretical analysis, and show that the proposed method yields state-of-the-art recovery performance, outperforming $ell_1$ minimization and a few other existing bootstrap-based techniques in the challenging case of low levels of measurements and is preferable over other bagging-based methods in the streaming setting since it performs better with small $K$ and $L$ for data-sets with large sizes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا