ترغب بنشر مسار تعليمي؟ اضغط هنا

Susceptibility to disorder of the optimal resetting rate in the Larkin model of directed polymers

67   0   0.0 ( 0 )
 نشر من قبل Pascal Grange
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pascal Grange




اسأل ChatGPT حول البحث

We consider the Larkin model of a directed polymer with Gaussian-distributed random forces, with the addition of a resetting process whereby the transverse position of the end-point of the polymer is reset to zero with constant rate $r$. We express the average over disorder of the mean time to absorption by an absorbing target at a fixed value of the transverse position. Thanks to the independence properties of the distribution of the random forces, this expression is analogous to the mean time to absorption for a diffusive particle under resetting, which possesses a single minimum at an optimal value $r^ast$ of the resetting rate . Moreover, the mean time to absorption can be expanded as a power series of the amplitude of the disorder, around the value $r^ast$ of the resetting rate. We obtain the susceptibility of the optimal resetting rate to disorder in closed form, and find it to be positive.



قيم البحث

اقرأ أيضاً

78 - A. P. Solon , G. Bunin , S. Chu 2017
We analyze the statistics of the shortest and fastest paths on the road network between randomly sampled end points. To a good approximation, these optimal paths are found to be directed in that their lengths (at large scales) are linearly proportion al to the absolute distance between them. This motivates comparisons to universal features of directed polymers in random media. There are similarities in scalings of fluctuations in length/time and transverse wanderings, but also important distinctions in the scaling exponents, likely due to long-range correlations in geographic and man-made features. At short scales the optimal paths are not directed due to circuitous excursions governed by a fat-tailed (power-law) probability distribution.
In this paper in terms of the replica method we consider the high temperature limit of (2+1) directed polymers in a random potential and propose an approach which allows to compute the scaling exponent $theta$ of the free energy fluctuations as well as the left tail of its probability distribution function. It is argued that $theta = 1/2$ which is different from the zero-temperature numerical value which is close to 0.241. This result implies that unlike the $(1+1)$ system in the two-dimensional case the free energy scaling exponent is non-universal being temperature dependent.
133 - Victor Dotsenko 2016
The joint statistical properties of two free energies computed at two different temperatures in {it the same sample} of $(1+1)$ directed polymers is studied in terms of the replica technique. The scaling dependence of the reduced free energies differ ence ${cal F} = F(T_{1})/T_{1} - F(T_{2})/T_{2}$ on the two temperatures $T_{1}$ and $T_{2}$ is derived. In particular, it is shown that if the two temperatures $T_{1} , < , T_{2}$ are close to each other the typical value of the fluctuating part of the reduced free energies difference ${cal F}$ is proportional to $(1 - T_{1}/T_{2})^{1/3}$. It is also shown that the left tail asymptotics of this free energy difference probability distribution function coincides with the corresponding tail of the TW distribution.
136 - Victor Dotsenko 2017
This review is devoted to the detailed consideration of the universal statistical properties of one-dimensional directed polymers in a random potential. In terms of the replica Bethe ansatz technique we derive several exact results for different type s of the free energy probability distribution functions. In the second part of the review we discuss the problems which are still waiting for their solutions. Several mathematical appendices in the ending part of the review contain various technical details of the performed calculations.
76 - Victor Dotsenko 2016
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا